

Intel[®] Pentium[®] D Processor 840, 830, and 820 $^{\Delta}$

Datasheet

October 2005

Document Number: 307506-002

Contents

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. INTEL PRODUCTS ARE NOT INTENDED FOR USE IN MEDICAL, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The Intel® Pentium® D processor may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

∆Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family, not across different processor families. Over time processor numbers will increment based on changes in clock speed, cache, FSB, or other features, and increments are not intended to represent proportional or quantitative increases in any particular feature. Current roadmap processor number progression is not necessarily representative of future roadmaps. See http://www.intel.com/products/processor_number for details.

[©]Intel[®] Extended Memory 64 Technology (Intel[®] EM64T) requires a computer system with a processor, chipset, BIOS, operating system, device drivers and applications enabled for Intel EM64T. Processor will not operate (including 32-bit operation) without an Intel EM64T-enabled BIOS. Performance will vary depending on your hardware and software configurations. See http://www.intel.com/info/em64t for more information including details on which processors support EM64T or consult with your system vendor for more information.

Enabling Execute Disable Bit functionality requires a PC with a processor with Execute Disable Bit capability and a supporting operating system. Check with your PC manufacturer on whether your system delivers Execute Disable Bit functionality.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Intel, Pentium, Intel Xeon, Intel NetBurst, Intel SpeedStep and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2005 Intel Corporation.

1	Intro	duction	11
	1.1	Terminology	12
		1.1.1 Processor Packaging Terminology	12
	1.2	References	13
2	Elect	trical Specifications	15
	2.1	Power and Ground Lands	15
	2.2	Decoupling Guidelines	15
		2.2.1 VCC Decoupling	15
		2.2.2 VTT Decoupling	
		2.2.3 FSB Decoupling	
	2.3	Voltage Identification	
	2.4	Reserved, Unused, FC and TESTHI Signals	
	2.5	Voltage and Current Specifications	
		2.5.1 Absolute Maximum and Minimum Ratings	
		2.5.2 DC Voltage and Current Specifications 2.5.3 VCC Overshoot Specification	
		2.5.4 Die Voltage Validation	
	2.6	Signaling Specifications	
	2.0	2.6.1 FSB Signal Groups	
		2.6.2 GTL+ Asynchronous Signals	
		2.6.3 FSB DC Specifications	
	2.7	Clock Specifications	32
		2.7.1 FSB Clock (BCLK[1:0]) and Processor Clocking	
		2.7.2 FSB Frequency Select Signals	
		2.7.3 Phase Lock Loop (PLL) and Filter	
3	Pack	age Mechanical Specifications	35
	3.1	Package Mechanical Drawing	35
	3.2	Processor Component Keep-Out Zones	39
	3.3	Package Loading Specifications	
	3.4	Package Handling Guidelines	
	3.5	Package Insertion Specifications	
	3.6	Processor Mass Specification	
	3.7 3.8	Processor Materials Processor Markings	
	3.9	Processor Land Coordinates	
4		Listing and Signal Descriptions	
7			
	4.1 4.2	Processor Land Assignments	
_			
5		mal Specifications and Design Considerations	
	5.1	Processor Thermal Specifications	
		5.1.1 Thermal Specifications	
	5 0	5.1.2 Thermal Metrology	
	5.2	Processor Thermal Features	79

Contents

		5.2.1	Thermal Monitor	70
		5.2.2	On-Demand Mode	
		5.2.3	PROCHOT# Signal	
		5.2.4	FORCEPR# Signal Pin	
		5.2.5	THERMTRIP# Signal	
		5.2.6	T _{CONTROL} and Fan Speed Reduction	
		5.2.7	Thermal Diode	
6	Featu	ıres		85
	6.1	Power-	-On Configuration Options	85
	6.2		Control and Low Power States	
		6.2.1	Normal State	86
		6.2.2	HALT and Enhanced HALT Powerdown States	86
		6.2.3	Stop-Grant State	
		6.2.4	Enhanced HALT Snoop or HALT Snoop State, Grant Snoop State	
		6.2.5	Enhanced Intel SpeedStep® Technology	88
7	Boxe	d Proces	ssor Specifications	89
	7.1		nical Specifications	
	7.1	7.1.1	Boxed Processor Cooling Solution Dimensions	
		7.1.2	Boxed Processor Fan Heatsink Weight	
		7.1.2	Boxed Processor Retention Mechanism and Heatsink Attach Clip Assembly	
	7.2		cal Requirements	
	1.2	7.2.1	Fan Heatsink Power Supply	
	7.3		al Specifications	
	7.0	7.3.1	Boxed Processor Cooling Requirements	
		7.3.2	Variable Speed Fan	
8	Balar		chnology Extended (BTX) Type I Boxed Processor Specifications	
	8.1		nical Specifications	
	0.1	8.1.1	Cooling Solution Dimensions	
		8.1.2	Boxed Processor Fan Heatsink Weight	
		8.1.3	Boxed Processor Support and Retention Module (SRM)	
	8.2		cal Requirements	
	0.2	8.2.1	Fan Heatsink Power Supply	
	8.3	•	al Specifications	
	0.0	8.3.1	Boxed Processor Cooling Requirements	
		8.3.2	Variable Speed Fan	
9	Debu	g Tools	Specifications	105
	9.1	Logic A	Analyzer Interface (LAI)	105
		9.1.1	Mechanical Considerations	
		912	Electrical Considerations	

Figures

2-1	VCC Static and Transient Tolerance for 775_VR_CONFIG_05A Pentium D Processor	22
	VCC Static and Transient Tolerance for 775_VR_CONFIG_05B Pentium D Processor	
	VCC Overshoot Example Waveform	
2-4	Phase Lock Loop (PLL) Filter Requirements	33
	Processor Package Assembly Sketch	
	Processor Package Drawing 1	
3-3	Processor Package Drawing 2	37
	Processor Package Drawing 3	
3-5	Processor Top-Side Markings	40
3-6	Processor Land Coordinates, Top View	41
4-1	Landout Diagram (Top View – Left Side)	44
	Landout Diagram (Top View – Right Side)	45
5-1	Thermal Profile for the Pentium D Processor with PRB=1	77
5-2	Thermal Profile for the Pentium D Processor with PRB=0	78
5-3	Case Temperature (TC) Measurement Location	79
	Processor Low Power State Machine	
7-1	Mechanical Representation of the Boxed Processor	89
7-2	Side View Space Requirements for the Boxed Processor (Applies to all four side views)	90
7-3	Top View Space Requirements for the Boxed Processor	90
7-4	Overall View Space Requirements for the Boxed Processor	91
7-5	Boxed Processor Fan Heatsink Power Cable Connector Description	92
7-6	Baseboard Power Header Placement Relative to Processor Socket	93
7-7	Boxed Processor Fan Heatsink Airspace Keepout Requirements (side 1 view)	94
7-8	Boxed Processor Fan Heatsink Airspace Keepout Requirements (side 2 view)	94
7-9	Boxed Processor Fan Heatsink Set Points	95
8-1	Mechanical Representation of the Boxed Processor	97
8-2	Requirements for the Balanced Technology Extended (BTX) Type I Keep-out Volumes	98
8-3	Assembly Stack Including the Support and Retention Module	99
	Boxed Processor Fan Heatsink Power Cable Connector	
8-5	Balanced Technology Extended (BTX) Mainboard Power Header Placement (hatched area)	101
8-6	Royald Processor TMA Sat Points	102

Contents

Tables

1-1	References	13
2-1	Voltage Identification Definition	17
	Processor DC Absolute Maximum Ratings	
2-3	Voltage and Current Specifications	20
2-4	VCC Static and Transient Tolerance for 775_VR_CONFIG_05A	
	Pentium D Processor	21
2-5	VCC Static and Transient Tolerance for 775_VR_CONFIG_05B	
	Pentium D Processor	
2-6	VCC Overshoot Specifications	25
2-7	FSB Signal Groups	27
2-8	Signal Characteristics	28
	Signal Reference Voltages	
2-10	0BSEL[1:0] and VID[5:0] Signal Group DC Specifications	29
	1GTL+ Signal Group DC Specifications	
	2PWRGOOD Input and TAP Signal Group DC Specifications	
2-13	3GTL+ Asynchronous Signal Group DC Specifications	30
	4VTTPWRGD DC Specifications	
2-15	5BOOTSELECT and MSID[1:0] DC Specifications	31
2-16	6GTL+ Bus Voltage Definitions	31
2-17	7 Core Frequency to FSB Multiplier Configuration	32
2-18	8BSEL[2:0] Frequency Table for BCLK[1:0]	32
3-1	Processor Loading Specifications	39
3-2	Package Handling Guidelines	39
3-3	Processor Materials	40
4-1	Alphabetical Land Assignments	46
4-2	Numerical Land Assignment	56
4-3	Signal Description	66
5-1	Processor Thermal Specifications	76
5-2	Thermal Profile for the Pentium D Processor with PRB=1	77
5-3	Thermal Profile for the Pentium D Processor with PRB=0	78
5-4	Thermal Diode Parameters	82
5-5	Thermal Diode Interface	83
6-1	Power-On Configuration Option Signals	85
7-1	Fan Heatsink Power and Signal Specifications	92
7-2	Fan Heatsink Power and Signal Specifications	
8-1	Fan Heatsink Power and Signal Specifications	100
8-2	Balanced Technology Extended (BTX) Type I Boxed Processor TMA	
	Set Points for 3-wire Operation	102

Revision History

Revision Number	Description	Date
-001	Initial release	May 2005
-002	 Added Balanced Technology Extended (BTX) Type I Boxed Processor Specifications chapter. 	October 2005

§

Contents

Intel[®] Pentium[®] D Processor 840, 830 and 820 Features

- Available at 3.20 GHz, 3 GHz, and 2.80 GHz
- Enhanced Intel Speedstep[®] Technology (Pentium D processor 840 and 830 only)
- Supports Intel[®] Extended Memory 64 Technology (Intel[®] EM64T)^Φ
- · Supports Execute Disable Bit capability
- Binary compatible with applications running on previous members of the Intel microprocessor line
- Intel NetBurst® microarchitecture
- FSB frequency at 800 MHz
- Hyper-Pipelined Technology
- Advance Dynamic Execution
- Very deep out-of-order execution
- Enhanced branch prediction
- Optimized for 32-bit applications running on advanced 32-bit operating systems

- Two 16-KB Level 1 data caches
- Two 1 MB Advanced Transfer Caches (on-die, full-speed Level 2 (L2) cache) with 8-way associativity and Error Correcting Code (ECC)
- 144 Streaming SIMD Extensions 2 (SSE2) instructions
- 13 Streaming SIMD Extensions 3 (SSE3) instructions
- Enhanced floating point and multimedia unit for enhanced video, audio, encryption, and 3D performance
- Power Management capabilities
- System Management mode
- Multiple low-power states
- 8-way cache associativity provides improved cache hit rate on load/store operations
- 775-land Package

The Intel[®] Pentium[®] D processor delivers Intel's advanced, powerful processors for desktop PCs that are based on the Intel NetBurst[®] microarchitecture. The Pentium D processor is designed to deliver performance across applications and usages where end-users can truly appreciate and experience the performance. These applications include Internet audio and streaming video, image processing, video content creation, speech, 3D, CAD, games, multimedia, and multitasking user environments.

Intel[®] Extended Memory 64 Technology (Intel[®] EM64T)^{Φ} enables the Pentium D processor to execute operating systems and applications written to take advantage of the Intel EM64T. The Pentium D processor 840 and 830 supporting Enhanced Intel Speedstep[®] technology allows tradeoffs to be made between performance and power consumption.

The Pentium D processor also includes the Execute Disable Bit capability. This feature, combined with a supported operating system, allows memory to be marked as executable or non-executable.

8

Contents

1 Introduction

The Intel® Pentium® D processor extends Intel's Desktop dual-core product line. The Pentium D processor uses Flip-Chip Land Grid Array (FC-LGA4) package technology, and plugs into a 775-land LGA socket, referred to as the LGA775 socket. The Pentium D processor, like the Intel® Pentium 4 processor in the 775-land package, utilizes the Intel NetBurst® microarchitecture and maintains the tradition of compatibility with IA-32 software.

The Intel[®] Pentium[®] D processor supports Intel[®] Extended Memory 64 Technology (Intel[®] EM64T)^Ф as an enhancement to Intel's IA-32 architecture, on server and workstation platforms. This enhancement enables the processor to execute operating systems and applications written to take advantage of Intel EM64T. Further details on the 64-bit extension architecture and programming model can be found in the *Intel[®]* 64-bit Extension Technology Software Developer's Guide at http://developer.intel.com/technology/64bitextensions/.

Note: In this document the Pentium D processor is also referred to as the processor.

The Pentium D processor functions as two physical processors in one package. This allows a duplication of execution resources to provide increased system responsiveness in multitasking environments, and headroom for next generation multithreaded applications and new usages.

The Pentium D processor supports all the existing Streaming SIMD Extensions 2 (SSE2) and Streaming SIMD Extensions 3 (SSE3). Streaming SIMD Extensions 3 (SSE3) are 13 additional instructions that further extend the capabilities of Intel processor technology. These new instructions enhance the performance of optimized applications for the digital home such as video, image processing, and media compression technology.

The processor's Intel NetBurst microarchitecture FSB uses a split-transaction, deferred reply protocol like the Intel Pentium 4 processor. The Intel NetBurst microarchitecture FSB uses Source-Synchronous Transfer (SST) of address and data to improve performance by transferring data four times per bus clock (4X data transfer rate, as in AGP 4X). Along with the 4X data bus, the address bus can deliver addresses two times per bus clock and is referred to as a "double-clocked" or 2X address bus. Working together, the 4X data bus and 2X address bus provide a data bus bandwidth of up to 6.4 GB/s.

The Pentium D processor includes the Execute Disable Bit capability. This feature, combined with a supported operating system, allows memory to be marked as executable or non-executable. If code attempts to run in non-executable memory the processor raises an error to the operating system. This feature can prevent some classes of viruses or worms that exploit buffer over run vulnerabilities and can thus help improve the overall security of the system. See the *Intel*® *Architecture Software Developer's Manual* for more detailed information.

Intel will enable support components for the processor including heatsink, heatsink retention mechanism, and socket. Manufacturability is a high priority; hence, mechanical assembly may be completed from the top of the baseboard and should not require any special tooling.

The processor includes an address bus powerdown capability that removes power from the address and data pins when the FSB is not in use. This feature is always enabled on the processor.

Enhanced Intel SpeedStep[®] Technology allows trade-offs to be made between performance and power consumptions. This may lower average power consumption (in conjunction with OS support).

1.1 Terminology

A '#' symbol after a signal name refers to an active low signal, indicating a signal is in the active state when driven to a low level. For example, when RESET# is low, a reset has been requested. Conversely, when NMI is high, a nonmaskable interrupt has occurred. In the case of signals where the name does not imply an active state but describes part of a binary sequence (such as *address* or *data*), the '#' symbol implies that the signal is inverted. For example, D[3:0] = 'HLHL' refers to a hex 'A', and D[3:0]# = 'LHLH' also refers to a hex 'A' (H= High logic level, L= Low logic level).

"FSB" refers to the interface between the processor and system core logic (a.k.a. the chipset components). The FSB is a multiprocessing interface to processors, memory, and I/O.

1.1.1 Processor Packaging Terminology

Commonly used terms are explained here for clarification:

- Intel[®] Pentium[®] D processor Dual-core processor in the FC-LGA4 package with two 1-MB L2 caches.
- **Processor** For this document, the term processor is the generic form of the Intel Pentium D processor.
- **Keep-out zone** The area on or near the processor that system design can not use.
- Intel[®] 945G/945P Express Chipset Family Chipset that supports DDR2 memory technology for the Pentium D processor.
- Intel[®] 955X Express Chipset Chipset that supports DDR2 memory technology for the Pentium D processor.
- **Processor core** Processor core die with integrated L2 cache.
- FC-LGA4 package The Pentium D processor is available in a Flip-Chip Land Grid Array
 4 package, consisting of a processor core mounted on a substrate with an integrated heat
 spreader (IHS).
- LGA775 socket The Pentium D processor mates with the system board through a surface mount, 775-land, LGA socket.
- Integrated heat spreader (IHS) A component of the processor package used to enhance the thermal performance of the package. Component thermal solutions interface with the processor at the IHS surface.
- **Retention mechanism (RM)** Since the LGA775 socket does not include any mechanical features for heatsink attach, a retention mechanism is required. Component thermal solutions should attach to the processor via a retention mechanism that is independent of the socket.
- Storage conditions Refers to a non-operational state. The processor may be installed in a platform, in a tray, or loose. Processors may be sealed in packaging or exposed to free air. Under these conditions, processor lands should not be connected to any supply voltages, have any I/Os biased, or receive any clocks. Upon exposure to "free air" (i.e., unsealed packaging or a device removed from packaging material) the processor must be handled in accordance with moisture sensitivity labeling (MSL) as indicated on the packaging material.
- Functional operation Refers to normal operating conditions in which all processor specifications, including DC, AC, system bus, signal quality, mechanical and thermal, are satisfied.

1.2 References

Material and concepts available in the following documents may be beneficial when reading this document:

Table 1-1. References

Document	Document Location		
Intel® Pentium® D Processor and Intel® Pentium® Processor Extreme Edition 840 Thermal and Mechanical Design Guidelines	http://developer.intel.com/design/ pentiumXE/designex/306830.htm		
Intel® Pentium® Processor Extreme Edition and Intel® Pentium® D Processor Specification Update	http://developer.intel.com/design/ PentiumXE/specupdt/ 306832.htm		
Voltage Regulator Down (VRD) 10.1 Design Guide For Desktop LGA775 Socket	http://developer.intel.com/design/ Pentium4/guides/302356.htm		
LGA775 Socket Mechanical Design Guide	http://developer.intel.com/design/ pentium4/guides/302666.htm		
Intel® Architecture Software Developer's Manual	-		
Volume 1: Basic Architecture, Document 253665			
Volume 2A :Instruction Set Reference, A-M, Document 253666	http://developer.intel.com/design/pentium4/manuals/		
Volume 2B: Instruction Set Reference, N-Z, Document 253667	index_new.htm		
Volume 3 : System Programming Guide, Document 253668			

§

Introduction

2 Electrical Specifications

This chapter describes the electrical characteristics of the processor interfaces and signals. DC electrical characteristics are provided.

2.1 Power and Ground Lands

The Intel® Pentium® D processor has 226 V_{CC} (power) and 273 V_{SS} (ground) inputs for on-chip power distribution. All VCC lands must be connected to the processor power plane, while all V_{SS} lands must be connected to the system ground plane. The processor V_{CC} lands must be supplied with the voltage determined by the processor Voltage IDentification (VID) lands.

The Pentium D processor has 24 signals that are denoted as VTT that provide termination for the front side bus and power to the I/O buffers. A separate supply must be implemented for these lands, that meets the V_{TT} specifications outlined in Table 2-3.

2.2 Decoupling Guidelines

Due to its large number of transistors and high internal clock speeds, the processor is capable of generating large current swings between low and full power states. This may cause voltages on power planes to sag below their minimum values if bulk decoupling is not adequate. Larger bulk storage (C_{BULK}), such as electrolytic or aluminum-polymer capacitors, supply current during longer lasting changes in current demand by the component, such as coming out of an idle condition. Similarly, they act as a storage well for current when entering an idle condition from a running condition. The motherboard must be designed to ensure that the voltage provided to the processor remains within the specifications listed in Table 2-3. Failure to do so can result in timing violations or reduced lifetime of the component. For further information and design guidelines, refer to the *Voltage Regulator Down (VRD) 10.1 Design Guide For Desktop LGA775 Socket*.

2.2.1 V_{CC} Decoupling

V_{CC} regulator solutions need to provide sufficient decoupling capacitance to satisfy the processor voltage specifications. This includes bulk capacitance with low effective series resistance (ESR) to keep the voltage rail within specifications during large swings in load current. In addition, ceramic decoupling capacitors are required to filter high frequency content generated by the front side bus and processor activity. Consult the *Voltage Regulator Down (VRD) 10.1 Design Guide For Desktop LGA775 Socket* for further information.

2.2.2 V_{TT} Decoupling

Decoupling must be provided on the motherboard. Decoupling solutions must be sized to meet the expected load. To insure compliance with the specifications, various factors associated with the power delivery solution must be considered including regulator type, power plane and trace sizing, and component placement. A conservative decoupling solution would consist of a combination of low ESR bulk capacitors and high frequency ceramic capacitors.

2.2.3 FSB Decoupling

The Pentium D processor package integrates signal termination on the die as well as incorporates high frequency decoupling capacitance on the processor package. Decoupling must also be provided by the system baseboard for proper GTL+ bus operation.

2.3 Voltage Identification

The Voltage Identification (VID) specification for the Pentium D processor is defined by the *Voltage Regulator Down (VRD) 10.1 Design Guide For Desktop LGA775 Socket*. The voltage set by the VID signals is the reference VR output voltage to be delivered to the processor VCC lands (Section 2.5.3 for V_{CC} overshoot specifications). Refer to Table 2-10 for the DC specifications for these signals. A minimum voltage for each processor frequency is provided in Table 2-3.

Individual processor VID values may be calibrated during manufacturing such that two devices at the same core speed may have different default VID settings. This is reflected by the VID Range values provided in Table 2-3.

The Pentium D processor uses six voltage identification signals, VID[5:0], to support automatic selection of power supply voltages. Table 2-1 specifies the voltage level corresponding to the state of VID[5:0]. A '1' in this table refers to a high voltage level and a '0' refers to low voltage level. If the processor socket is empty (VID[5:0] = x11111), or the voltage regulation circuit cannot supply the voltage that is requested, it must disable itself. See the *Voltage Regulator Down (VRD) 10.1 Design Guide For Desktop LGA775 Socket* for more details.

The processor provides the ability to operate while transitioning to an adjacent VID and its associated processor core voltage ($V_{\rm CC}$). This will represent a DC shift in the load line. It should be noted that a low-to-high or high-to-low voltage state change may result in as many VID transitions as necessary to reach the target core voltage. Transitions above the specified VID are not permitted. Minimum and maximum voltages must be maintained as shown in Table 2-4/Table 2-5 and Figure 2-1/Figure 2-2 as measured across the VCC_SENSE and VSS_SENSE lands.

The VRM or VRD utilized must be capable of regulating its output to the value defined by the new VID. DC specifications for dynamic VID transitions are included in Table 2-3, Table 2-4, and Table 2-5. Refer to the *Voltage Regulator Down (VRD) 10.1 Design Guide For Desktop LGA775 Socket* for further details.

Table 2-1. Voltage Identification Definition

VID5	VID4	VID3	VID2	VID1	VID0	VID
0	0	1	0	1	0	0.8375
1	0	1	0	0	1	0.8500
0	0	1	0	0	1	0.8625
1	0	1	0	0	0	0.8750
0	0	1	0	0	0	0.8875
1	0	0	1	1	1	0.9000
0	0	0	1	1	1	0.9125
1	0	0	1	1	0	0.9250
0	0	0	1	1	0	0.9375
1	0	0	1	0	1	0.9500
0	0	0	1	0	1	0.9625
1	0	0	1	0	0	0.9750
0	0	0	1	0	0	0.9875
1	0	0	0	1	1	1.0000
0	0	0	0	1	1	1.0125
1	0	0	0	1	0	1.0250
0	0	0	0	1	0	1.0375
1	0	0	0	0	1	1.0500
0	0	0	0	0	1	1.0625
1	0	0	0	0	0	1.0750
0	0	0	0	0	0	1.0875
1	1	1	1	1	1	VR output off
0	1	1	1	1	1	VR output off
1	1	1	1	1	0	1.1000
0	1	1	1	1	0	1.1125
1	1	1	1	0	1	1.1250
0	1	1	1	0	1	1.1375
1	1	1	1	0	0	1.1500
0	1	1	1	0	0	1.1625
1	1	1	0	1	1	1.1750
0	1	1	0	1	1	1.1875
			_			

VID5	VID4	VID3	VID2	VID1	VID0	VID
0	1	1	0	1	0	1.2125
1	1	1	0	0	1	1.2250
0	1	1	0	0	1	1.2375
1	1	1	0	0	0	1.2500
0	1	1	0	0	0	1.2625
1	1	0	1	1	1	1.2750
0	1	0	1	1	1	1.2875
1	1	0	1	1	0	1.3000
0	1	0	1	1	0	1.3125
1	1	0	1	0	1	1.3250
0	1	0	1	0	1	1.3375
1	1	0	1	0	0	1.3500
0	1	0	1	0	0	1.3625
1	1	0	0	1	1	1.3750
0	1	0	0	1	1	1.3875
1	1	0	0	1	0	1.4000
0	1	0	0	1	0	1.4125
1	1	0	0	0	1	1.4250
0	1	0	0	0	1	1.4375
1	1	0	0	0	0	1.4500
0	1	0	0	0	0	1.4625
1	0	1	1	1	1	1.4750
0	0	1	1	1	1	1.4875
1	0	1	1	1	0	1.5000
0	0	1	1	1	0	1.5125
1	0	1	1	0	1	1.5250
0	0	1	1	0	1	1.5375
1	0	1	1	0	0	1.5500
0	0	1	1	0	0	1.5625
1	0	1	0	1	1	1.5750
0	0	1	0	1	1	1.5875
1	0	1	0	1	0	1.6000

2.4 Reserved, Unused, FC and TESTHI Signals

All RESERVED lands must remain unconnected. Connection of these lands to V_{CC} , V_{SS} , V_{TT} , or to any other signal (including each other) can result in component malfunction or incompatibility with future processors. See Chapter 4 for a land listing of the processor and the location of all RESERVED lands.

For reliable operation, always connect unused inputs or bidirectional signals to an appropriate signal level. In a system level design, on-die termination has been included on the Pentium D processor to allow signals to be terminated within the processor silicon. Most unused GTL+ inputs should be left as no connects, as GTL+ termination is provided on the processor silicon. However, see Table 2-8 for details on GTL+ signals that do not include on-die termination. Unused active high inputs should be connected through a resistor to ground (V_{SS}). Unused outputs can be left unconnected; however, this may interfere with some test access port (TAP) functions, complicate debug probing, and prevent boundary scan testing. A resistor must be used when tying bidirectional signals to power or ground. When tying any signal to power or ground, a resistor will also allow for system testability. For unused GTL+ inputs or I/O signals, use pull-up resistors of the same value as the on-die termination resistors (R_{TT}). Refer to Table 2-16 for more details.

TAP, GTL+ Asynchronous inputs, and GTL+ Asynchronous outputs do not include on-die termination. Inputs and used outputs must be terminated on the system board. Unused outputs may be terminated on the system board or left unconnected. Note that leaving unused outputs unterminated may interfere with some TAP functions, complicate debug probing, and prevent boundary scan testing.

FCx signals are signals that are available for compatibility with other processors.

The TESTHI signals must be tied to the processor V_{TT} using a matched resistor, where a matched resistor has a resistance value within $\pm 20\%$ of the impedance of the board transmission line traces. For example, if the trace impedance is 60Ω , then a value between 48Ω and 72Ω is required.

The TESTHI signals may use individual pull-up resistors or be grouped together as detailed below. A matched resistor must be used for each group:

- TESTHI[1:0]
- TESTHI[7:2]
- TESTHI8 cannot be grouped with other TESTHI signals
- TESTHI9 cannot be grouped with other TESTHI signals
- TESTHI10 cannot be grouped with other TESTHI signals
- TESTHI11 cannot be grouped with other TESTHI signals
- TESTHI12 cannot be grouped with other TESTHI signals
- TESTHI13 cannot be grouped with other TESTHI signals

2.5 Voltage and Current Specifications

2.5.1 Absolute Maximum and Minimum Ratings

Table 2-2 specifies absolute maximum and minimum ratings. Within functional operation limits, functionality and long-term reliability can be expected.

At conditions outside functional operation condition limits, but within absolute maximum and minimum ratings, neither functionality nor long-term reliability can be expected. If a device is returned to conditions within functional operation limits after having been subjected to conditions outside these limits, but within the absolute maximum and minimum ratings, the device may be functional, but with its lifetime degraded depending on exposure to conditions exceeding the functional operation condition limits.

At conditions exceeding absolute maximum and minimum ratings, neither functionality nor long-term reliability can be expected. Moreover, if a device is subjected to these conditions for any length of time then, when returned to conditions within the functional operating condition limits, it will either not function, or its reliability will be severely degraded.

Although the processor contains protective circuitry to resist damage from static electric discharge, precautions should always be taken to avoid high static voltages or electric fields.

Table 2-2. Processor DC Absolute Maximum Ratings

Symbol	Parameter	Min	Max	Unit	Notes ^{1, 2}
V _{CC}	Core voltage with respect to V _{SS}	- 0.3	1.55	V	-
V _{TT}	FSB termination voltage with respect to V _{SS}	- 0.3	1.55	V	-
T _C	Processor case temperature	See Section 5	See Section 5	°C	-
T _{STORAGE}	Processor storage temperature	-40	+85	°C	3, 4

NOTES:

- 1. For functional operation, all processor electrical, signal quality, mechanical and thermal specifications must be satisfied.
- Excessive overshoot or undershoot on any signal will likely result in permanent damage to the processor.
- 3. Storage temperature is applicable to storage conditions only. In this scenario, the processor must not receive a clock, and no lands can be connected to a voltage bias. Storage within these limits will not affect the long-term reliability of the device. For functional operation, refer to the processor case temperature specifications.
- 4. This rating applies to the processor and does not include any tray or packaging.

2.5.2 DC Voltage and Current Specifications

The processor DC specifications in this section are defined at the processor core silicon and not at the package lands unless noted otherwise. See Chapter 4 for the signal definitions and signal assignments. Most of the signals on the processor FSB are in the GTL+ signal group.

Table 2-3. Voltage and Current Specifications

Symbol	Parameter			Тур	Max	Unit	Notes
VID range		VID	1.200	_	1.400	V	1
	Processor number	Core Frequency					
Vcc	V _{CC} for 775_VR_CONFIG_05B processor (PRB = 1) 840 830 3.20 GHz 3 GHz			to Table 2 Figure 2-2		V	2, 3, 4, 5
	820	V _{CC} for 775_VR_CONFIG_05A processor (PRB = 0) 2.80 GHz	Refer to Table 2-4 and Figure 2-1			V	2, 3, 5, 6, 7
I _{cc}	840 830	I _{CC} for 775_VR_CONFIG_05B Pentium D processor (PRB = 1) 3.20 GHz 3 GHz	_	_	125 125	A	8
	820	I _{CC} for 775_VR_CONFIG_05A Pentium D processor (PRB = 0) 2.80 GHz	_	_	100		
I _{CC_RESET}	840 830 820	I _{CC} when PWRGOOD and RESET# are active 3.20GHz 3 GHz 2.80 GHz	_	_	125 125 106	А	9
I _{SGNT}	840/830/820	I _{CC} Stop-Grant 3.20/3/2.80 GHz	_	_	65	А	10, 11, 12
I _{ENHANCED_HALT}	840/830/820	I _{CC} Enhanced Halt 3.20/3/2.80 GHz	_	_	50	А	11, 12
I _{TCC}	I _{CC} TCC active		_	_	I _{cc}	Α	13
V _{TT}	V _{TT} for 775_VTT_CONFIG_2 processors: FSB termination voltage (DC+AC specifications)		1.14	1.20	1.26	V	14, 15
VTT_OUT I _{CC}	DC Current that may be drawn from VTT_OUT per pin			_	580	mA	-
I _{TT}	FSB termination current			_	4.7	Α	12, 16
I _{CC_VCCA}	I _{CC} for PLL lands			_	120	mA	12
I _{CC_VCCIOPLL}	I _{CC} for I/O PLL land		_	_	100	mA	12
I _{CC_GTLREF}	I _{CC} for GTLREF		_	_	200	μА	12

NOTES:

- 1. Individual processor VID values may be calibrated during manufacturing such that two devices at the same speed may have different VID settings.
- 2. These voltages are targets only. A variable voltage source should exist on systems in the event that a different voltage is required. See Section 2.3 and Table 2-1 for more information.
- 3. The voltage specification requirements are measured across VCC_SENSE and VSS_SENSE lands at the socket with a 100 MHz bandwidth oscilloscope, 1.5 pF maximum probe capacitance, and 1 MΩ minimum impedance. The maximum length of ground wire on the probe should be less than 5 mm. Ensure external noise from the system is not coupled into the oscilloscope probe.
- Refer to Table 2-5 and Figure 2-2 for the minimum, typical, and maximum V_{CC} allowed for a given current. The processor should not be subjected to any V_{CC} and I_{CC} combination wherein V_{CC} exceeds V_{CC_MAX} for a given current.
 775_VR_CONFIG_05A and 775_VR_CONFIG_05B refer to voltage regulator configurations that are defined in the *Voltage Regulator Down (VRD)*
- 7/5_VR_CONFIG_05A and 7/5_VR_CONFIG_05B refer to voltage regulator configurations that are defined in the Voltage Regulator Down (VRD)
 10.1 Design Guide For Desktop LGA775 Socket.
- Refer to Table 2-4 and Figure 2-1 for the minimum, typical, and maximum V_{CC} allowed for a given current. The processor should not be subjected to any V_{CC} and I_{CC} combination wherein V_{CC} exceeds V_{CC_MAX} for a given current.

- These frequencies will operate properly in a system designed for 775_VR_CONFIG_05B processors. The power and I_{CC} will be incrementally higher in this configuration due to the improved loadline and resulting higher V_{CC}.
- I_{CC_MAX} is specified at V_{CC_MAX} . I_{CC_RSET} is specified while PWRGOOD and RESET# are active. The current specified is also for AutoHALT State.

- I_{CC} Stop-Grant and I_{CC} Enhanced Halt are specified at V_{CC_MAX} . These parameters are based on design characterization and are not tested.
- The maximum instantaneous current the processor will draw while the thermal control circuit is active as indicated by the assertion of PROCHOT# is the same as the maximum lcc for the processor.
- V_{TT} must be provided via a separate voltage source and not be connected to V_{CC} . This specification is measured at the land.
- Baseboard bandwidth is limited to 20 MHz.
- This is maximum total current drawn from V_{TT} plane by only the processor. This specification does not include the current coming from R_{TT} (through the signal line). Refer to the Voltage Regulator Down (VRD) 10.1 Design Guide For Desktop LGA775 Socket to determine the total I_{TT} drawn by the

Table 2-4. V_{CC} Static and Transient Tolerance for 775_VR_CONFIG_05A Pentium D Processor

Icc (A)	Voltage Deviation from VID Setting (V) ^{1, 2, 3}						
-	Maximum Voltage 1.30 mΩ	Typical Voltage 1.38 mΩ	Minimum Voltage 1.45 mΩ				
0	0.000	-0.019	-0.038				
5	-0.007	-0.026	-0.045				
10	-0.013	-0.033	-0.053				
15	-0.020	-0.040	-0.060				
20	-0.026	-0.047	-0.067				
25	-0.033	-0.053	-0.074				
30	-0.039	-0.060	-0.082				
35	-0.046	-0.067	-0.089				
40	-0.052	-0.074	-0.096				
45	-0.059	-0.081	-0.103				
50	-0.065	-0.088	-0.111				
55	-0.072	-0.095	-0.118				
60	-0.078	-0.102	-0.125				
65	-0.085	-0.108	-0.132				
70	-0.091	-0.115	-0.140				
75	-0.098	-0.122	-0.147				
80	-0.101	-0.126	-0.151				
85	-0.111	-0.136	-0.161				
90	-0.117	-0.143	-0.169				
95	-0.124	-0.150	-0.176				
100	-0.130	-0.157	-0.183				

- The loadline specification includes both static and transient limits except for overshoot allowed as shown in
- This table is intended to aid in reading discrete points on Figure 2-1.
- The loadlines specify voltage limits at the die measured at the VCC_SENSE and VSS_SENSE lands. Voltage regulation feedback for voltage regulator circuits must be taken from processor VCC and VSS lands. Refer to the Voltage Regulator Down (VRD) 10.1 Design Guide For Desktop LGA775 Socket for socket loadline guidelines and VR implementation details.

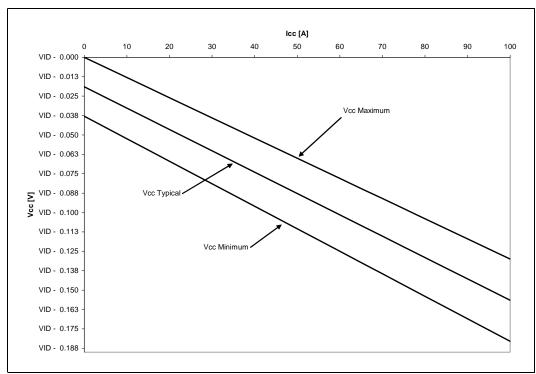


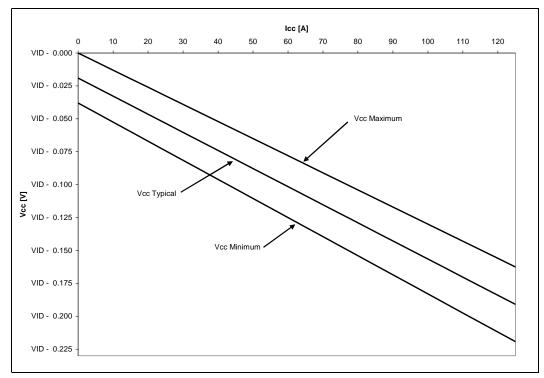
Figure 2-1. V_{CC} Static and Transient Tolerance for 775_VR_CONFIG_05A Pentium D Processor

NOTES:

- 1. The loadline specification includes both static and transient limits except for overshoot allowed as shown in Section 2.5.3.
- 2. This loadline specification shows the deviation from the VID set point.
- 3. The loadlines specify voltage limits at the die measured at the VCC_SENSE and VSS_SENSE lands. Voltage regulation feedback for voltage regulator circuits must be taken from processor VCC and VSS lands. Refer to the Voltage Regulator Down (VRD) 10.1 Design Guide For Desktop LGA775 Socket for socket loadline guidelines and VR implementation details.

Table 2-5. V_{CC} Static and Transient Tolerance for 775_VR_CONFIG_05B Pentium D Processor

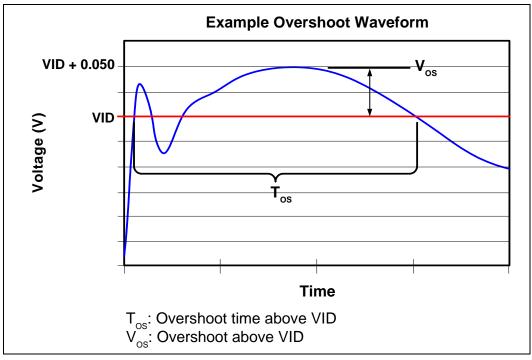
Icc (A)	Voltage Deviation from VID Setting (V) ^{1, 2, 3}					
-	Maximum Voltage 1.30 mΩ	Typical Voltage 1.38 mΩ	Minimum Voltage 1.45 mΩ			
0	0.000	-0.019	-0.038			
5	-0.007	-0.026	-0.045			
10	-0.013	-0.033	-0.053			
15	-0.020	-0.040	-0.060			
20	-0.026	-0.047	-0.067			
25	-0.033	-0.053	-0.074			
30	-0.039	-0.060	-0.082			
35	-0.046	-0.067	-0.089			
40	-0.052	-0.074	-0.096			
45	-0.059	-0.081	-0.103			
50	-0.065	-0.088	-0.111			
55	-0.072	-0.095	-0.118			
60	-0.078	-0.102	-0.125			
65	-0.085	-0.108	-0.132			
70	-0.091	-0.115	-0.140			
75	-0.098	-0.122	-0.147			
80	-0.101	-0.126	-0.151			
85	-0.111	-0.136	-0.161			
90	-0.117	-0.143	-0.169			
95	-0.124	-0.150	-0.176			
100	-0.130	-0.157	-0.183			
105	-0.137	-0.163	-0.190			
110	-0.143	-0.170	-0.198			
115	-0.150	-0.177	-0.205			
120	-0.156	-0.184	-0.212			
125	-0.163	-0.191	-0.219			


NOTES:

- The loadline specification includes both static and transient limits except for overshoot allowed as shown
- This table is intended to aid in reading discrete points on Figure 2-2.

 The loadlines specify voltage limits at the die measured at the VCC_SENSE and VSS_SENSE lands. Voltage regulation feedback for voltage regulator circuits must be taken from processor VCC and VSS lands. Refer to the Voltage Regulator Down (VRD) 10.1 Design Guide For Desktop LGA775 Socket for socket loadline guidelines and VR implementation details.

Figure 2-2. V_{CC} Static and Transient Tolerance for 775_VR_CONFIG_05B Pentium D Processor


V_{CC} Overshoot Specification

The Pentium D processor can tolerate short transient overshoot events where V_{CC} exceeds the VID voltage when transitioning from a high-to-low current load condition. This overshoot cannot exceed VID + V_{OS_MAX} (V_{OS_MAX} is the maximum allowable overshoot voltage). The time duration of the overshoot event must not exceed T_{OS_MAX} (T_{OS_MAX} is the maximum allowable time duration above VID). These specifications apply to the processor die voltage as measured across the VCC_SENSE and VSS_SENSE lands.

Table 2-6. V_{CC} Overshoot Specifications

Symbol	Parameter	Min	Тур	Max	Unit	Figure
V _{OS_MAX}	Magnitude of V _{CC} overshoot above VID	_	_	0.050	V	2-3
T _{OS_MAX}	Time duration of V _{CC} overshoot above VID	_	_	25	μS	2-3

Figure 2-3. V_{CC} Overshoot Example Waveform

- V_{OS} is measured overshoot voltage.
 T_{OS} is measured time duration above VID.

2.5.4 Die Voltage Validation

Overshoot events on the processor must meet the specifications in Table 2-6 when measured across the VCC_SENSE and VSS_SENSE lands. Overshoot events that are < 10 ns in duration may be ignored. These measurements of processor die level overshoot must be taken with a bandwidth limited oscilloscope set to a greater than or equal to 100 MHz bandwidth limit. Refer to the *Voltage Regulator Down (VRD) 10.1 Design Guide For Desktop LGA775 Socket* for additional voltage regulator validation details.

2.6 Signaling Specifications

Most processor Front Side Bus signals use Gunning Transceiver Logic (GTL+) signaling technology. This technology provides improved noise margins and reduced ringing through low voltage swings and controlled edge rates. Platforms implement a termination voltage level for GTL+ signals defined as V_{TT} . Because platforms implement separate power planes for each processor (and chipset), separate V_{CC} and V_{TT} supplies are necessary. This configuration allows for improved noise tolerance as processor frequency increases. Speed enhancements to data and address busses have caused signal integrity considerations and platform design methods to become even more critical than with previous processor families.

The GTL+ inputs require a reference voltage (GTLREF) that is used by the receivers to determine if a signal is a logical 0 or a logical 1. GTLREF must be generated on the motherboard (see Table 2-16 for GTLREF specifications). Termination resistors (R_{TT}) for GTL+ signals are provided on the processor silicon and are terminated to V_{TT} . Intel chipsets will also provide on-die termination, thus eliminating the need to terminate the bus on the motherboard for most GTL+ signals.

2.6.1 FSB Signal Groups

The FSB signals have been combined into groups by buffer type. GTL+ input signals have differential input buffers that use GTLREF as a reference level. In this document, the term "GTL+ Input" refers to the GTL+ input group as well as the GTL+ I/O group when receiving. Similarly, "GTL+ Output" refers to the GTL+ output group as well as the GTL+ I/O group when driving.

With the implementation of a source synchronous data bus comes the need to specify two sets of timing parameters. One set is for common clock signals whose timings are specified with respect to rising edge of BCLK0 (ADS#, HIT#, HITM#, etc.) and the second set is for the source synchronous signals that are relative to their respective strobe lines (data and address) as well as rising edge of BCLK0. Asynchronous signals are still present (A20M#, IGNNE#, etc.) and can become active at any time during the clock cycle. Table 2-7 identifies which signals are common clock, source synchronous and asynchronous.

Table 2-7. FSB Signal Groups

Signal Group	Туре	Signals ¹		
GTL+ Common Clock Input	Synchronous to BCLK[1:0]	BPRI#, DEFER#, RESET#, RS[2:0]#, RSP#, TRDY#,		
GTL+ Common Clock I/O	Synchronous to BCLK[1:0]	AP[1:0]#, ADS#, BINIT#, BNR#, BPM[5:0]#, BR0#, DBSY#, DP[3:0]#, DRDY#, HIT#, HITM#, LOCK#, MCERR#		
		Signals Associated Strobe		
		REQ[4:0]#, A[16:3]# ADSTB0#		
GTL+ Source	Synchronous to assoc.	A[35:17]# ADSTB1#		
Synchronous I/O	strobe ²	D[15:0]#, DBI0# DSTBP0#, DSTBN0#		
		D[31:16]#, DBI1# DSTBP1#, DSTBN1#		
		D[47:32]#, DBI2# DSTBP2#, DSTBN2#		
		D[63:48]#, DBI3# DSTBP3#, DSTBN3#		
GTL+ Strobes	Synchronous to BCLK[1:0]	ADSTB[1:0]#, DSTBP[3:0]#, DSTBN[3:0]#		
GTL+ Asynchronous Input		A20M#, FORCEPR#, IGNNE#, INIT#, LINT0/INTR, LINT1/NMI, SMI#, STPCLK#		
GTL+ Asynchronous Output		FERR#/PBE#, IERR#, THERMTRIP#		
GTL+ Asynchronous Input/Output		PROCHOT#		
TAP Input	Synchronous to TCK	TCK, TDI, TMS, TRST#		
TAP Output	Synchronous to TCK	TDO		
FSB Clock	Clock	BCLK[1:0], ITP_CLK[1:0] ³		
Power/Other		VCC, VTT, VCCA, VCCIOPLL, VID[5:0], VSS, VSSA, GTLREF[1:0], COMP[1:0], COMP[3:2], IMPSEL, RESERVED, TESTHI[13:0], THERMDA, THERMDC, VCC_SENSE, VSS_SENSE, BSEL[2:0], SKTOCC#, DBR# ³ , VTTPWRGD, BOOTSELECT, PWRGOOD, VTT_OUT_LEFT, VTT_OUT_RIGHT, VTT_SEL, LL_ID[1:0], FCx, VCC_MB_REGULATION, VSS_MB_REGULATION, MSID[1:0], VCCPLL		

NOTES:

- 1. Refer to Section 4.2 for signal descriptions.
- The value of A[16:3]# and A[35:17]# during the active-to-inactive edge of RESET# defines the processor configuration options. See Section 6.1 for details.
- In processor systems where there is no debug port implemented on the system board, these signals are used to support a debug port interposer. In systems with the debug port implemented on the system board, these signals are no connects.

Table 2-8 outlines the signals which include on-die termination (R_{TT}). Open drain signals are also included. Table 2-9 provides signal reference voltages.

Table 2-8. Signal Characteristics

Signals with R _{TT}	Signals with no R _{TT}
A[35:3]#, ADS#, ADSTB[1:0]#, AP[1:0]#, BINIT#, BNR#, BOOTSELECT ¹ , BPRI#, D[63:0]#, DBI[3:0]#, DBSY#, DEFER#, DP[3:0]#, DRDY#, DSTBN[3:0]#, DSTBP[3:0]#, FORCEPR#, HIT#, HITM#, IMPSEL ¹ , LOCK#, MCERR#, PROCHOT#, REQ[4:0]#, RS[2:0]#, RSP#, TRDY#, MSID[1:0] ¹	A20M#, BCLK[1:0], BPM[5:0]#, BR0#, BSEL[2:0], COMP[3:0], FERR#/PBE#, IERR#, IGNNE#, INIT#, LINTO/INTR, LINT1/NMI, PWRGOOD, RESET#, SKTOCC#, SMI#, STPCLK#, TDO, TESTHI[13:0], THERMDA, THERMDC, THERMTRIP#, VID[5:0], VTTPWRGD, GTLREF[1:0], TCK, TDI, TRST#, TMS
Open Drain Signals ²	
BSEL[2:0], VID[5:0], THERMTRIP#, FERR#/ PBE#, IERR#, BPM[5:0]#, BR0#, TDO, VTT_SEL, LL_ID[1:0]	

NOTES:

- 1. These signals have a 250–5000 Ω pullup to V_{TT} rather than on-die termination.
- 2. Signals that do not have R_{TT} , nor are actively driven to their high-voltage level.

Table 2-9. Signal Reference Voltages

GTLREF	V _{TT} /2
BPM[5:0]#, LINTO/INTR, LINT1/NMI, RESET#, BINIT#, BNR#, HIT#, HITM#, MCERR#, PROCHOT#, BR0#, A[35:0]#, ADS#, ADSTB[1:0]#, AP[1:0]#, BPRI#, D[63:0]#, DBI[3:0]#, DBSY#, DEFER#, DP[3:0]#, DRDY#, DSTBN[3:0]#, DSTBP[3:0]#, LOCK#, REQ[4:0]#, RS[2:0]#, RSP#, TRDY#	BOOTSELECT, VTTPWRGD, A20M#, IGNNE#, INIT#, PWRGOOD ¹ , SMI#, STPCLK#, TCK ¹ , TDI ¹ , TMS ¹ , TRST# ¹ , MSID[1:0]

NOTES:

These signals also have hysteresis added to the reference voltage. See Table 2-12 for more information.

2.6.2 GTL+ Asynchronous Signals

The signals A20M#, IGNNE#, INIT#, SMI#, and STPCLK# utilize CMOS input buffers. GTL+ asynchronous signals follow the same DC requirements as GTL+ signals; however, the outputs are not actively driven high (during a logical 0 to 1 transition) by the processor. GTL+ asynchronous signals do not have setup or hold time specifications in relation to BCLK[1:0].

All of the GTL+ Asynchronous signals are required to be asserted/deasserted for at least six BCLKs in order for the processor to recognize the proper signal state. See Section 2.6.3 for the DC specifications for the GTL+ Asynchronous signal groups. See Table 6.2 for additional timing requirements for entering and leaving the low power states.

2.6.3 **FSB DC Specifications**

The processor front side bus DC specifications in this section are defined at the processor core (pads) unless otherwise stated. All specifications apply to all frequencies and cache sizes unless otherwise stated.

Table 2-10. BSEL[1:0] and VID[5:0] Signal Group DC Specifications

Symbol	Parameter	Max	Unit	Notes ^{1, 2}
R _{ON} (BSEL)	Buffer On Resistance	60	Ω	-
R _{ON} (VID)	Buffer On Resistance	60	Ω	-
I _{OL}	Max Land Current	8	mA	-
I _{LO}	Output Leakage Current	200	μΑ	3
V _{TOL}	Voltage Tolerance	V _{TT} (max)	V	-

NOTES:

- Unless otherwise noted, all specifications in this table apply to all processor frequencies.
- These parameters are not tested and are based on design simulations.
- Leakage to V_{SS} with land held at 2.5V.

Table 2-11. GTL+ Signal Group DC Specifications

Symbol	Parameter	Min	Max	Unit	Notes ¹
V _{IL}	Input Low Voltage	0.0	GTLREF - (0.10 * V _{TT})	V	2, 3
V _{IH}	Input High Voltage	GTLREF + (0.10 * V _{TT})	V _{TT}	V	3, 4, 5
V _{OH}	Output High Voltage	N/A	V _{TT}	V	3, 5
I _{OL}	Output Low Current	N/A	$V_{TT}/[(0.50^*R_{TT_MIN}) + R_{ON_MIN}]$	Α	-
I _{LI}	Input Leakage Current	N/A	± 200	μΑ	6
I _{LO}	Output Leakage Current	N/A	± 200	μΑ	6
R _{ON}	Buffer On Resistance	8	12	Ω	

- Unless otherwise noted, all specifications in this table apply to all processor frequencies. $V_{\rm IL}$ is defined as the voltage range at a receiving agent that will be interpreted as a logical low value.
- The V_{TT} referred to in these specifications is the instantaneous V_{TT} . V_{IH} is defined as the voltage range at a receiving agent that will be interpreted as a logical high value. V_{IH} and V_{OH} may experience excursions above V_{TT} .
- Leakage to V_{SS} with land held at V_{TT} .

Table 2-12. PWRGOOD Input and TAP Signal Group DC Specifications

Symbol	Parameter	Min	Max	Unit	Notes ^{1, 2}
V _{HYS}	Input Hysteresis	200	350	mV	3
V _{T+}	Input low to high threshold voltage	0.5 * (V _{TT} + V _{HYS_MIN})	0.5 * (V _{TT} + V _{HYS_MAX})	V	4
V _T -	Input high to low threshold voltage	0.5 * (V _{TT} – V _{HYS_MAX})	0.5 * (V _{TT} – V _{HYS_MIN})	V	4
V _{OH}	Output High Voltage	N/A	V _{TT}	V	4
I _{OL}	Output Low Current	-	45	mA	5
I _{LI}	Input Leakage Current	-	± 200	μΑ	6
I _{LO}	Output Leakage Current	-	± 200	μΑ	6
R _{ON}	Buffer On Resistance	7	12	Ω	

- Unless otherwise noted, all specifications in this table apply to all processor frequencies.
- All outputs are open drain.
- 4
- V_{HYS} represents the amount of hysteresis, nominally centered about 0.5 * V_{TT}, for all TAP inputs.

 The V_{TT} referred to in these specifications refers to instantaneous V_{TT}.

 The maximum output current is based on maximum current handling capability of the buffer and is not specified into the test 5. load.
- Leakage to V_{SS} with land held at V_{TT} .

Table 2-13. GTL+ Asynchronous Signal Group DC Specifications

Symbol	Parameter	Min	Max	Unit	Notes ¹
V _{IL}	Input Low Voltage	0.0	V _{TT} /2 – (0.10 * V _{TT})	-	2, 3
V _{IH}	Input High Voltage	V _{TT} /2 + (0.10 * V _{TT})	V _{TT}	-	3, 4, 5, 6
V _{OH}	Output High Voltage	0.90*V _{TT}	V _{TT}	V	5, 6, 7
I _{OL}	Output Low Current	_	V _{TT} /[(0.50*R _{TT_MIN}) + R _{ON_MIN}]	Α	8
ILI	Input Leakage Current	N/A	± 200	μA	9
I _{LO}	Output Leakage Current	N/A	± 200	μΑ	10
R _{ON}	Buffer On Resistance	8	12	Ω	

NOTES:

- Unless otherwise noted, all specifications in this table apply to all processor frequencies.
- V_{IL} is defined as the voltage range at a receiving agent that will be interpreted as a logical low value. LINTO/INTR, LINT1/NMI, and FORCEPR# use GTLREF as a reference voltage. For these two signals, $V_{IH} = \text{GTLREF} + (0.10 * VTT)$ and $V_{IL} = \text{GTLREF} (0.10 * VTT)$. 3.
- V_{IH} is defined as the voltage range at a receiving agent that will be interpreted as a logical high value.
- V_{IH} and V_{OH} may experience excursions above V_{TT}.
- The VTT referred to in these specifications refers to instantaneous V_{TT} .
- All outputs are open drain.
- 8. The maximum output current is based on maximum current handling capability of the buffer and is not specified into the test
- Leakage to V_{SS} with land held at V_{TT}.
- 10. Leakage to V_{TT} with land held at 300 mV.

Table 2-14. VTTPWRGD DC Specifications

Symbol	Parameter	Min	Тур	Max	Unit	Notes
V _{IL}	Input Low Voltage	_	_	0.3	V	
V _{IH}	Input High Voltage	0.9	_	_	V	

Table 2-15. BOOTSELECT and MSID[1:0] DC Specifications

	Symbol	Parameter	Min	Тур	Max	Unit	Notes
Ī	V_{IL}	Input Low Voltage	_	_	0.24	V	1
Ī	V_{IH}	Input High Voltage	0.96	_	_	V	-

NOTES:

2.6.3.1 GTL+ Front Side Bus Specifications

In most cases, termination resistors are not required as these are integrated into the processor silicon. See Table 2-8 for details on which GTL+ signals do not include on-die termination.

Valid high and low levels are determined by the input buffers by comparing with a reference voltage called GTLREF. Table 2-16 lists the GTLREF specifications. The GTL+ reference voltage (GTLREF) must be generated on the motherboard using high precision voltage divider circuits.

Table 2-16. GTL+ Bus Voltage Definitions

Symbol	Parameter	Min	Тур	Max	Units	Notes ¹
GTLREF_PU	GTLREF pull up resistor	124 * 0.99	124	124 * 1.01	Ω	2
GTLREF_PD	GTLREF pull down resistor	210 * 0.99	210	210 * 1.01	Ω	2
R _{PULLUP}	On die pullup for BOOTSELECT signal	500	-	5000	Ω	3
P	60 Ω Platform Termination Resistance	41	50	58	Ω	4
R _{TT}	$50~\Omega$ Platform Termination Resistance	37	45	52	Ω	4
COMP[1:0]	$60~\Omega$ Platform COMP Resistance	59.8	60.4	61	Ω	5
COIVII [1.0]	$50~\Omega$ Platform COMP Resistance	49.9 * 0.99	49.9	49.9 * 1.01	Ω	5
COMP[3:2]	$60~\Omega$ Platform COMP Resistance	59.8	60.4	61	Ω	5
GOIVII [3.2]	$50~\Omega$ Platform COMP Resistance	49.9 * 0.99	49.9	49.9 * 1.01	Ω	5

NOTES:

- 1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.
- GTLREF is to be generated from V_{TT} by a voltage divider of 1% resistors (one divider for each GTLREF land).
- These pull-ups are to V_{TT}.
- R_{TT} is the on-die termination resistance measured at V_{TT}/2 of the GTL+ output driver. The IMPSEL pin is used to select a 50Ω or 60Ω buffer and R_{TT} value.
- COMP resistance must be provided on the system board with 1% resistors. COMP[1:0] resistors are to V_{SS}. COMP[3:2] resistors are to V_{SS}.

^{1.} These parameters are not tested and are based on design simulations.

2.7 Clock Specifications

2.7.1 FSB Clock (BCLK[1:0]) and Processor Clocking

BCLK[1:0] directly controls the FSB interface speed as well as the core frequency of the processor. As in previous generation processors, the Pentium D processor core frequency is a multiple of the BCLK[1:0] frequency. The processor bus ratio multiplier will be set at its default ratio during manufacturing. The Pentium D processor uses a differential clocking implementation.

Table 2-17. Core Frequency to FSB Multiplier Configuration

Multiplication of System Core Frequency to FSB Frequency	Core Frequency (200 MHz BCLK/800 MHz FSB)	Notes ^{1, 2}
1/14	2.80 GHz	-
1/15	3 GHz	-
1/16	3.20 GHz	-
1/17	RESERVED	-
1/18	RESERVED	-
1/19	RESERVED	-
1/20	RESERVED	-
1/21	RESERVED	-

NOTES:

- 1. Individual processors operate only at or below the rated frequency.
- 2. Listed frequencies are not necessarily committed production frequencies.

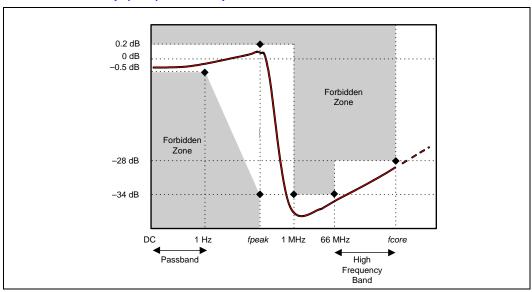
2.7.2 FSB Frequency Select Signals

Upon power up, the front side bus frequency is set to the maximum supported by the individual processor. BSEL[1:0] are open-drain outputs, which must be pulled up to V_{TT} , and are used to select the front side bus frequency. Please refer to Table 2-10 for DC specifications. Table 2-18 defines the possible combinations of the signals and the frequency associated with each combination. The frequency is determined by the processor(s), chipset, and clock synthesizer. Individual processors will only operate at their specified front side bus clock frequency.

Table 2-18. BSEL[2:0] Frequency Table for BCLK[1:0]

BSEL2	BSEL1	BSEL0	FSB Frequency
L	L	L	RESERVED
L	L	Н	RESERVED
L	Н	Н	RESERVED
L	Н	L	200 MHz
Н	L	L	RESERVED
Н	L	Н	RESERVED
Н	Н	Н	RESERVED
Н	Н	L	RESERVED

2.7.3 Phase Lock Loop (PLL) and Filter


 V_{CCA} and $V_{CCIOPLL}$ are power sources required by the PLL clock generators for the Pentium D processor. Since these PLLs are analog in nature, they require quiet power supplies for minimum jitter. Jitter is detrimental to the system: it degrades external I/O timings as well as internal core timings (i.e., maximum frequency). To prevent this degradation, these supplies must be low pass filtered from V_{TT} .

The AC low-pass requirements, with input at V_{TT} are as follows:

- < 0.2 dB gain in pass band
- < 0.5 dB attenuation in pass band < 1 Hz
- > 34 dB attenuation from 1 MHz to 66 MHz
- > 28 dB attenuation from 66 MHz to core frequency

The filter requirements are illustrated in Figure 2-4.

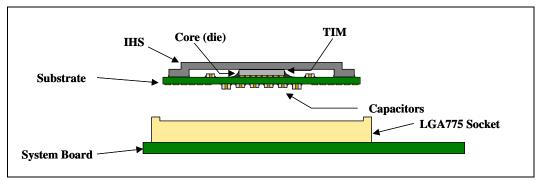
Figure 2-4. Phase Lock Loop (PLL) Filter Requirements

NOTES:

- 1. Diagram not to scale.
- 2. No specifications for frequencies beyond fcore (core frequency).
- 3. fpeak, if existent, should be less than 0.05 MHz.
- 4. fcore represents the maximum core frequency supported by the platform.

§

Electrical Specifications


3 Package Mechanical Specifications

The Intel[®] Pentium[®] D processor is packaged in a Flip-Chip Land Grid Array (FC-LGA4) package that interfaces with the motherboard via an LGA775 socket. The package consists of a processor core mounted on a substrate land-carrier. An integrated heat spreader (IHS) is attached to the package substrate and core and serves as the mating surface for processor component thermal solutions, such as a heatsink. Figure 3-1 shows a sketch of the processor package components and how they are assembled together. Refer to the *LGA775 Socket Mechanical Design Guide* for complete details on the LGA775 socket.

The package components shown in Figure 3-1 include the following:

- Integrated Heat Spreader (IHS)
- Thermal Interface Material (TIM)
- Processor core (die)
- Package substrate
- Capacitors

Figure 3-1. Processor Package Assembly Sketch

NOTE:

1. Socket and motherboard are included for reference and are not part of processor package.

3.1 Package Mechanical Drawing

The package mechanical drawings are shown in Figure 3-2 and Figure 3-4. The drawings include dimensions necessary to design a thermal solution for the processor. These dimensions include:

- Package reference with tolerances (total height, length, width, etc.)
- IHS parallelism and tilt
- Land dimensions
- Top-side and back-side component keep-out dimensions
- · Reference datums

Figure 3-2. Processor Package Drawing 1

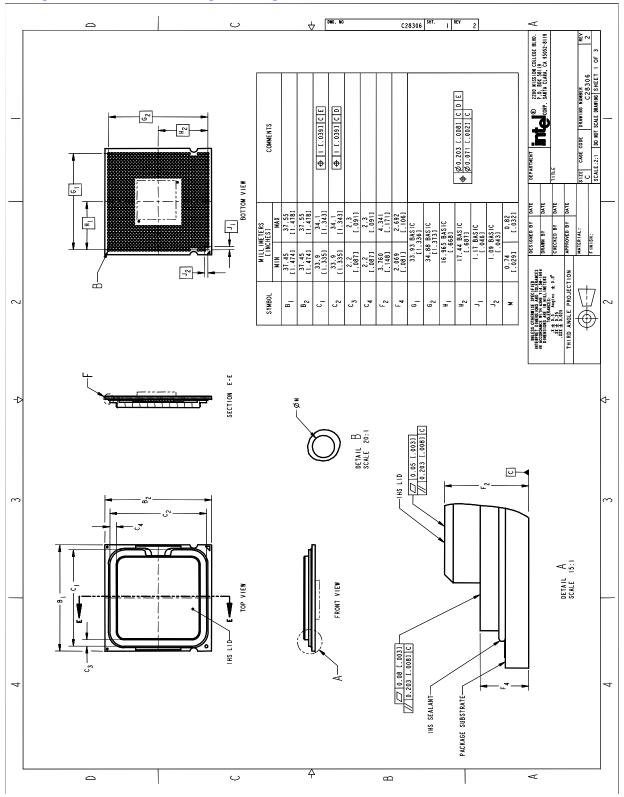


Figure 3-3. Processor Package Drawing 2

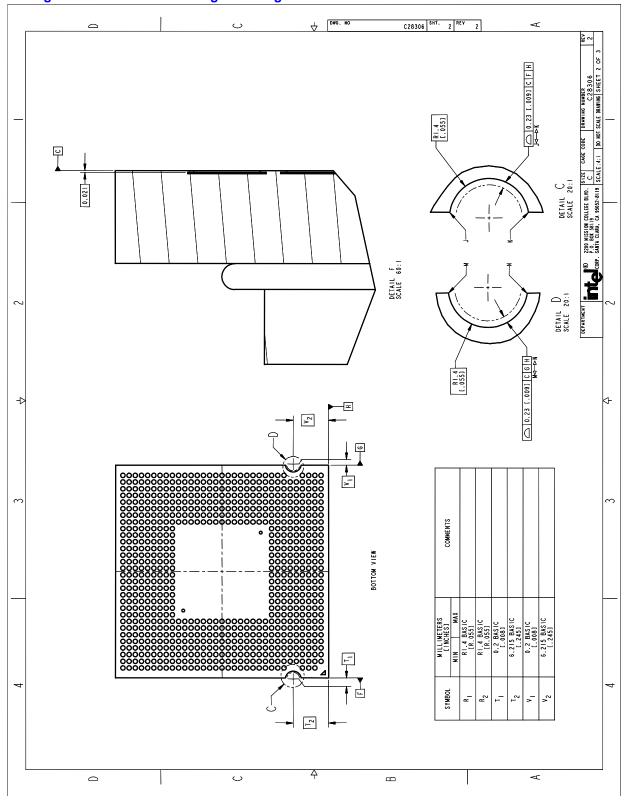
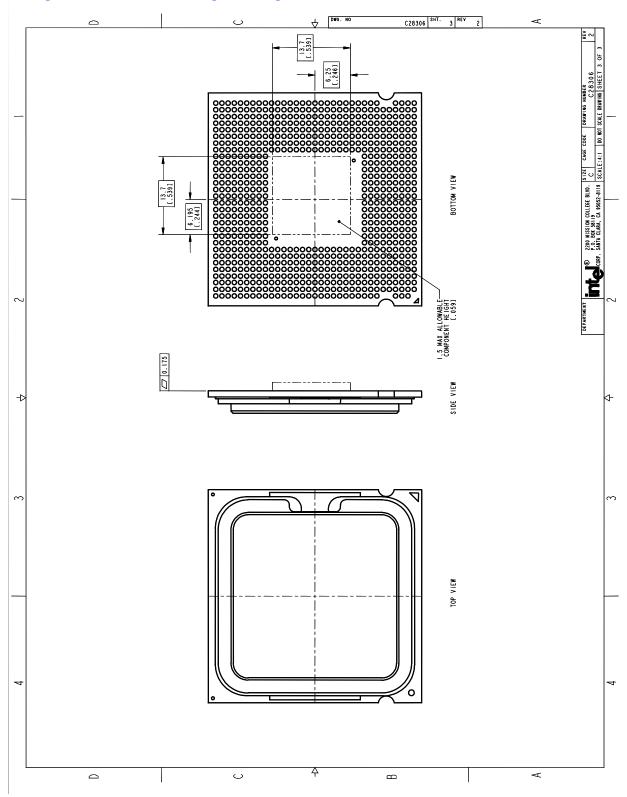



Figure 3-4. Processor Package Drawing 3

3.2 Processor Component Keep-Out Zones

The processor may contain components on the substrate that define component keep-out zone requirements. A thermal and mechanical solution design must not intrude into the required keep-out zones. Decoupling capacitors are typically mounted to either the topside or land-side of the package substrate. See Figure 3-2 and Figure 3-3 for keep-out zones.

The location and quantity of package capacitors may change due to manufacturing efficiencies but will remain within the component keep-in.

3.3 Package Loading Specifications

Table 3-1 provides dynamic and static load specifications for the processor package. These mechanical maximum load limits should not be exceeded during heatsink assembly, shipping conditions, or standard use condition. Also, any mechanical system or component testing should not exceed the maximum limits. The processor package substrate should not be used as a mechanical reference or load-bearing surface for thermal and mechanical solution. The minimum loading specification must be maintained by any thermal and mechanical solutions.

Table 3-1. Processor Loading Specifications

Parameter	Minimum	Maximum	Notes
Static	80 N [18 lbf]	311 N [70 lbf]	1, 2, 3
Dynamic	_	756 N [170 lbf]	1, 3, 4

NOTES:

- 1. These specifications apply to uniform compressive loading in a direction normal to the processor IHS.
- This is the maximum force that can be applied by a heatsink retention clip. The clip must also provide the minimum specified load on the processor package.
- These specifications are based on limited testing for design characterization. Loading limits are for the package only and does not include the limits of the processor socket.
- 4. Dynamic loading is defined as the sum of the load on the package from a 1 lb heatsink mass accelerating through a 11 ms trapezoidal pulse of 50 g and the maximum static load.

3.4 Package Handling Guidelines

Table 3-2 includes a list of guidelines on package handling in terms of recommended maximum loading on the processor IHS relative to a fixed substrate. These package handling loads may be experienced during heatsink removal.

Table 3-2. Package Handling Guidelines

Parameter	Maximum Recommended	Notes
Shear	311 N [70 lbf]	1, 4
Tensile	111 N [25 lbf]	2, 4
Torque	3.95 N-m [35 lbf-in]	3, 4

NOTES:

- A shear load is defined as a load applied to the IHS in a direction parallel to the IHS top surface.
- A tensile load is defined as a pulling load applied to the IHS in a direction normal to the IHS surface.
- 3. A torque load is defined as a twisting load applied to the IHS in an axis of rotation normal to the IHS top surface.
- 4. These guidelines are based on limited testing for design characterization.

3.5 Package Insertion Specifications

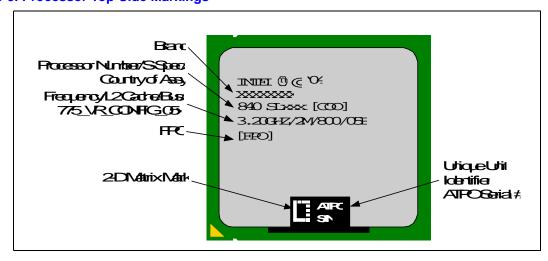
The Pentium D processor can be inserted into and removed from a LGA775 socket 15 times. The socket should meet the LGA775 requirements detailed in the *LGA775 Socket Mechanical Design Guide*.

3.6 Processor Mass Specification

The typical mass of the Pentium D processor is 22.03 g [0.78 oz]. This mass [weight] includes all the components that are included in the package.

3.7 Processor Materials

Table 3-3 lists some of the package components and associated materials.

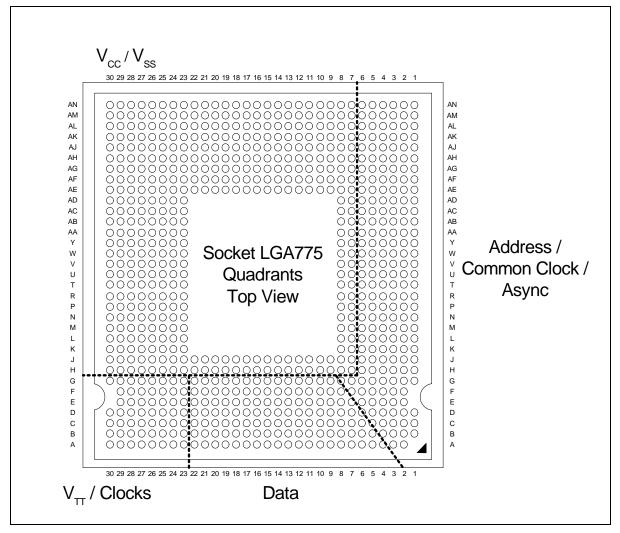

Table 3-3. Processor Materials

Component	Material		
Integrated Heat Spreader (IHS)	Nickel Plated Copper		
Substrate	Fiber Reinforced Resin		
Substrate Lands	Gold Plated Copper		

3.8 Processor Markings

Figure 3-5 shows the topside markings on the processor. These diagrams are to aid in the identification of the Pentium D processor.

Figure 3-5. Processor Top-Side Markings



3.9 Processor Land Coordinates

Figure 3-6 shows the top view of the processor land coordinates. The coordinates are referred to throughout the document to identify processor lands.

Figure 3-6. Processor Land Coordinates, Top View

Ş

Package Mechanical Specifications

4 Land Listing and Signal Descriptions

This chapter provides the processor land assignment and signal descriptions.

4.1 Processor Land Assignments

This section contains the land listings for the Intel[®] Pentium[®] D processor. The landout footprint is shown in Figure 4-1 and Figure 4-2. These figures represent the landout arranged by land number and they show the physical location of each signal on the package land array (top view). Table 4-1 is a listing of all processor lands ordered alphabetically by land (signal) name. Table 4-2 is also a listing of all processor lands; the ordering is by land number.

Figure 4-1. Landout Diagram (Top View – Left Side)

	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15
AN	vcc	VCC	VSS	VSS	VCC	VCC	VSS	VSS	VCC	VCC	VSS	vcc	VCC	VSS	VSS	vcc
АМ	VCC	VCC	VSS	VSS	VCC	VCC	VSS	VSS	VCC	VCC	VSS	VCC	VCC	VSS	VSS	VCC
AL	VCC	VCC	VSS	VSS	VCC	VCC	VSS	VSS	VCC	VCC	VSS	VCC	VCC	VSS	VSS	VCC
AK	VSS	VSS	VSS	VSS	VCC	VCC	VSS	VSS	VCC	VCC	VSS	VCC	VCC	VSS	VSS	VCC
AJ	VSS	VSS	VSS	VSS	VCC	VCC	VSS	VSS	VCC	VCC	VSS	VCC	VCC	VSS	VSS	VCC
АН	VCC	VCC	VCC	VCC	VCC	VCC	VSS	VSS	VCC	VCC	VSS	VCC	VCC	VSS	VSS	VCC
AG	VCC	VCC	VCC	VCC	VCC	VCC	VSS	VSS	VCC	VCC	VSS	VCC	VCC	VSS	VSS	VCC
AF	VSS	VSS	VSS	VSS	VSS	VSS	VSS	VSS	VCC	VCC	VSS	VCC	VCC	VSS	VSS	VCC
AE	VSS	VSS	VSS	VSS	VSS	VSS	VSS	VCC	VCC	VCC	VSS	VCC	VCC	VSS	VSS	VCC
AD	VCC	VCC	VCC	VCC	VCC	VCC	VCC	VCC								
AC	VCC	VCC	VCC	VCC	VCC	VCC	VCC	VCC								
AB	VSS	VSS	VSS	VSS	VSS	VSS	VSS	VSS								
AA	VSS	VSS	VSS	VSS	VSS	VSS	VSS	VSS								
Υ	VCC	vcc	vcc	vcc	vcc	vcc	vcc	VCC								
w	VCC	VCC	VCC	VCC	VCC	VCC	VCC	VCC								
V	VSS	VSS	VSS	VSS	VSS	VSS	VSS	VSS								
U	VCC	VCC	VCC	VCC	VCC	VCC	VCC	VCC								
Т	VCC	VCC	VCC	VCC	VCC	VCC	VCC	VCC								
R	VSS	VSS	VSS	VSS	VSS	VSS	VSS	VSS								
Р	VSS	VSS	VSS	VSS	VSS	VSS	VSS	VSS								
N	VCC	VCC	VCC	VCC	VCC	VCC	VCC	VCC								
М	VCC	vcc	vcc	vcc	vcc	vcc	VCC	vcc								
L	VSS	VSS	VSS	VSS	VSS	VSS	VSS	VSS								
κ	VCC	VCC	VCC	VCC	VCC	VCC	VCC	VCC								
J	VCC	VCC	VCC	VCC	VCC	VCC	VCC	VCC	VCC	VCC	vcc	VCC	VCC	DP3#	DP0#	vcc
Н	BSEL1	GTLREF _SEL	VSS	VSS	VSS	VSS	VSS	VSS	VSS	VSS	VSS	VSS	VSS	VSS	DP2#	DP1#
G	BSEL2	BSEL0	BCLK1	TESTHI4	TESTHI5	TESTHI3	TESTHI6	RESET#	D47#	D44#	DSTBN2#	DSTBP2#	D35#	D36#	D32#	D31#
F		RSVD	BCLK0	VTT_SEL	TESTHI0	TESTHI2	TESTHI7	RSVD	VSS	D43#	D41#	VSS	D38#	D37#	VSS	D30#
E		VSS	VSS	VSS	VSS	VSS	FC10	RSVD	D45#	D42#	VSS	D40#	D39#	VSS	D34#	D33#
D	VTT	VTT	VTT	VTT	VTT	VTT	VSS	VCCPLL	D46#	VSS	D48#	DBI2#	VSS	D49#	RSVD	VSS
С	VTT	VTT	VTT	VTT	VTT	VTT	VSS	VCCIO PLL	VSS	D58#	DBI3#	VSS	D54#	DSTBP3#	VSS	D51#
В	VTT	VTT	VTT	VTT	VTT	VTT	VSS	VSSA	D63#	D59#	VSS	D60#	D57#	VSS	D55#	D53#
Α	VTT	VTT	VTT	VTT	VTT	VTT	VSS	VCCA	D62#	VSS	RSVD	D61#	VSS	D56#	DSTBN3#	VSS
	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15

Figure 4-2. Landout Diagram (Top View – Right Side)

						•	•		•	•				•
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
AN	VSS	VSS	VCC_ SENSE	VSS_ SENSE	VCC_MB_ REGULATION	VSS_MB_ REGULATION	FC16	VCC	VCC	VSS	VCC	VCC	VSS	VCC
AM	VSS	VID0	VID2	VSS	FC11	VTTPWRGD	FC12	VCC	VCC	VSS	VCC	VCC	VSS	VCC
AL	THERMDA	PROCHOT#	VSS	VID5	VID1	VID3	VSS	VCC	VCC	VSS	VCC	VCC	VSS	VCC
AK	THERMDC	VSS	ITP_CLK0	VID4	VSS	FORCEPR#	VSS	VCC	VCC	VSS	VCC	VCC	VSS	VCC
AJ	BPM1#	BPM0#	ITP_CLK1	VSS	A34#	A35#	VSS	VCC	VCC	VSS	VCC	VCC	VSS	VCC
АН	VSS	RSVD	VSS	A32#	A33#	VSS	VSS	VCC	VCC	VSS	VCC	VCC	VSS	VCC
AG	TRST#	BPM3#	BPM5#	A30#	A31#	A29#	VSS	VCC	VCC	VSS	VCC	VCC	VSS	VCC
AF	TDO	BPM4#	VSS	A28#	A27#	VSS	VSS	VCC	VCC	VSS	VCC	VCC	VSS	VCC
ΑE	TCK	VSS	FC18	RSVD	VSS	RSVD	VSS	SKTOCC#	VCC	VSS	VCC	VCC	VSS	VCC
AD	TDI	BPM2#	BINIT#	VSS	ADSTB1#	A22#	VSS	vcc						
AC	TMS	DBR#	VSS	RSVD	A25#	VSS	VSS	vcc						
AB	VSS	IERR#	MCERR#	A26#	A24#	A17#	VSS	vcc						
AA	VTT_OUT_ RIGHT	LL_ID1	VSS	A21#	A23#	VSS	VSS	VCC						
Y	BOOT SELECT	VSS	FC17	A20#	vss	A19#	VSS	vcc						
W	MSID0	TESTHI12	TESTHI1	VSS	A16#	A18#	VSS	VCC						
٧	MSID1	LL_ID0	VSS	A15#	A14#	VSS	VSS	VCC						
U	VSS	AP0#	AP1#	A13#	A12#	A10#	VSS	vcc						
Т	COMP1	FC4	VSS	A11#	A9#	VSS	VSS	VCC						
R	COMP3	VSS	FERR#/ PBE#	A8#	VSS	ADSTB0#	VSS	vcc						
Р	TESTHI11	SMI#	INIT#	VSS	RSVD	A4#	VSS	vcc						
N	PWRGOOD	IGNNE#	VSS	RSVD	RSVD	VSS	VSS	VCC						
М	VSS	THER- MTRIP#	STPCLK#	A7#	A5#	REQ2#	VSS	vcc						
L	LINT1	TESTHI13	VSS	A6#	A3#	VSS	VSS	VCC						
K	LINT0	VSS	A20M#	REQ0#	VSS	REQ3#	VSS	vcc						
J	VTT_OUT_ LEFT	FC3	FC22	VSS	REQ1#	REQ4#	VSS	vcc	VCC	VCC	VCC	vcc	VCC	VCC
Н	GTLREF0	GTLREF1	VSS	RSP#	TESTHI10	VSS	VSS	vss	VSS	VSS	VSS	VSS	VSS	VSS
G	VSS	COMP2	TESTHI8	TESTHI9	FC7	RSVD	DEFER#	BPRI#	D16#	RSVD	DBI1#	DSTBN1#	D27#	D29#
F		FC5	BR0#	VSS	RS1#	IMPSEL	VSS	D17#	D18#	VSS	D23#	D24#	VSS	D28#
E		VSS	TRDY#	HITM#	FC20	RSVD	RSVD	VSS	D19#	D21#	VSS	DSTBP1#	D26#	VSS
D	RSVD	ADS#	VSS	HIT#	VSS	VSS	D20#	D12#	VSS	D22#	D15#	VSS	D25#	RSVD
С	DRDY#	BNR#	LOCK#	VSS	D1#	D3#	VSS	DSTBN0#	RSVD	VSS	D11#	D14#	VSS	D52#
В	VSS	DBSY#	RS0#	D0#	VSS	D5#	D6#	VSS	DSTBP0#	D10#	VSS	D13#	FC19	VSS
Α		VSS	RS2#	D2#	D4#	VSS	D7#	DBI0#	VSS	D8#	D9#	VSS	COMP0	D50#
	1	2	3	4	5	6	7	8	9	10	11	12	13	14

Table 4-1. Alphabetical Land Assignments

Signal Buffer Land **Land Name Direction** Type L5 A3# Source Synch Input/Output P6 A4# Source Synch Input/Output A5# M5 Input/Output Source Synch A6# L4 Source Synch Input/Output M4 Input/Output A7# Source Synch A8# R4 Source Synch Input/Output A9# T5 Input/Output Source Synch A10# U6 Input/Output Source Synch T4 A11# Source Synch Input/Output A12# U5 Input/Output Source Synch U4 Source Synch A13# Input/Output V5 A14# Source Synch Input/Output A15# V4 Input/Output Source Synch W5 A16# Source Synch Input/Output AB6 A17# Source Synch Input/Output A18# W6 Source Synch Input/Output A19# Y6 Source Synch Input/Output Y4 A20# Source Synch Input/Output A20M# K3 Asynch GTL+ Input A21# AA4 Source Synch Input/Output A22# AD6 Input/Output Source Synch A23# AA5 Source Synch Input/Output A24# AB5 Source Synch Input/Output A25# AC5 Input/Output Source Synch A26# AB4 Source Synch Input/Output A27# AF5 Source Synch Input/Output Source Synch A28# AF4 Input/Output A29# AG6 Input/Output Source Synch A30# AG4 Source Synch Input/Output A31# AG5 Input/Output Source Synch A32# AH4 Input/Output Source Synch A33# AH5 Source Synch Input/Output A34# AJ5 Source Synch Input/Output AJ6 A35# Source Synch Input/Output ADS# D2 Common Clock Input/Output ADSTB0# R6 Source Synch Input/Output ADSTB1# AD5 Input/Output Source Synch AP0# U2 Common Clock Input/Output AP1# U3 Common Clock Input/Output BCLK0 F28 Clock Input

Table 4-1. Alphabetical Land Assignments

Land Name	Land #	Signal Buffer Type	Direction
BCLK1	G28	Clock	Input
BINIT#	AD3	Common Clock	Input/Output
BNR#	C2	Common Clock	Input/Output
BOOTSELECT	Y1	Power/Other	Input
BPM0#	AJ2	Common Clock	Input/Output
BPM1#	AJ1	Common Clock	Input/Output
BPM2#	AD2	Common Clock	Input/Output
BPM3#	AG2	Common Clock	Input/Output
BPM4#	AF2	Common Clock	Input/Output
BPM5#	AG3	Common Clock	Input/Output
BPRI#	G8	Common Clock	Input
BR0#	F3	Common Clock	Input/Output
BSEL0	G29	Power/Other	Output
BSEL1	H30	Power/Other	Output
BSEL2	G30	Power/Other	Output
COMP0	A13	Power/Other	Input
COMP1	T1	Power/Other	Input
COMP2	G2	Power/Other	Input
COMP3	R1	Power/Other	Input
D0#	B4	Source Synch	Input/Output
D1#	C5	Source Synch	Input/Output
D2#	A4	Source Synch	Input/Output
D3#	C6	Source Synch	Input/Output
D4#	A5	Source Synch	Input/Output
D5#	В6	Source Synch	Input/Output
D6#	В7	Source Synch	Input/Output
D7#	A7	Source Synch	Input/Output
D8#	A10	Source Synch	Input/Output
D9#	A11	Source Synch	Input/Output
D10#	B10	Source Synch	Input/Output
D11#	C11	Source Synch	Input/Output
D12#	D8	Source Synch	Input/Output
D13#	B12	Source Synch	Input/Output
D14#	C12	Source Synch	Input/Output
D15#	D11	Source Synch	Input/Output
D16#	G9	Source Synch	Input/Output
D17#	F8	Source Synch	Input/Output
D18#	F9	Source Synch	Input/Output
D19#	E9	Source Synch	Input/Output
D20#	D7	Source Synch	Input/Output

Table 4-1. Alphabetical Land Assignments

Signal Buffer Land **Land Name Direction** Type E10 D21# Input/Output Source Synch D10 D22# Source Synch Input/Output D23# F11 Input/Output Source Synch D24# F12 Input/Output Source Synch D13 Input/Output D25# Source Synch D26# E13 Source Synch Input/Output D27# G13 Input/Output Source Synch F14 Input/Output D28# Source Synch D29# G14 Source Synch Input/Output F15 D30# Source Synch Input/Output Input/Output D31# G15 Source Synch D32# G16 Source Synch Input/Output D33# E15 Input/Output Source Synch E16 D34# Source Synch Input/Output D35# G18 Source Synch Input/Output D36# G17 Source Synch Input/Output D37# F17 Source Synch Input/Output F18 D38# Source Synch Input/Output D39# E18 Source Synch Input/Output D40# E19 Input/Output Source Synch F20 D41# Source Synch Input/Output D42# E21 Source Synch Input/Output D43# F21 Source Synch Input/Output Input/Output D44# G21 Source Synch D45# E22 Source Synch Input/Output D46# D22 Source Synch Input/Output D47# G22 Input/Output Source Synch D48# D20 Input/Output Source Synch D49# D17 Source Synch Input/Output D50# Input/Output A14 Source Synch C15 Input/Output D51# Source Synch D52# C14 Source Synch Input/Output D53# B15 Input/Output Source Synch C18 Input/Output D54# Source Synch D55# B16 Source Synch Input/Output D56# A17 Source Synch Input/Output D57# B18 Input/Output Source Synch D58# C21 Source Synch Input/Output D59# B21 Source Synch Input/Output D60# B19 Source Synch Input/Output

Table 4-1. Alphabetical Land Assignments

Assignments									
Land Name	Land #	Signal Buffer Type	Direction						
D61#	A19	Source Synch	Input/Output						
D62#	A22	Source Synch	Input/Output						
D63#	B22	Source Synch	Input/Output						
DBI0#	A8	Source Synch	Input/Output						
DBI1#	G11	Source Synch	Input/Output						
DBI2#	D19	Source Synch	Input/Output						
DBI3#	C20	Source Synch	Input/Output						
DBR#	AC2	Power/Other	Output						
DBSY#	B2	Common Clock	Input/Output						
DEFER#	G7	Common Clock	Input						
DP0#	J16	Common Clock	Input/Output						
DP1#	H15	Common Clock	Input/Output						
DP2#	H16	Common Clock	Input/Output						
DP3#	J17	Common Clock	Input/Output						
DRDY#	C1	Common Clock	Input/Output						
DSTBN0#	C8	Source Synch	Input/Output						
DSTBN1#	G12	Source Synch	Input/Output						
DSTBN2#	G20	Source Synch	Input/Output						
DSTBN3#	A16	Source Synch	Input/Output						
DSTBP0#	В9	Source Synch	Input/Output						
DSTBP1#	E12	Source Synch	Input/Output						
DSTBP2#	G19	Source Synch	Input/Output						
DSTBP3#	C17	Source Synch	Input/Output						
FC3	J2	Power/Other	Input						
FC4	T2	Power/Other	Input						
FC5	F2	Common Clock	Input						
FC7	G5	Source Synch	Output						
FC10	E24	Power/Other	Input						
FC11	AM5	Power/Other	Output						
FC12	AM7	Power/Other	Output						
FC16	AN7	Power/Other	Output						
FC17	Y3	Power/Other	Input						
FC18	AE3	Power/Other	Input						
FC19	B13	Power/Other	Input						
FC20	E5	Power/Other	Input						
FC22	J3	Power/Other	Input						
FERR#/PBE#	R3	Asynch GTL+	Output						
FORCEPR#	AK6	Asynch GTL+	Input						
GTLREF_SEL	H29	Power/Other	Output						
GTLREF0	H1	Power/Other	Input						

Table 4-1. Alphabetical Land Assignments

Land Signal Buffer **Land Name Direction** Type GTLREF1 H2 Power/Other Input HIT# D4 Common Clock Input/Output HITM# E4 Common Clock Input/Output IERR# AB2 Asynch GTL+ Output IGNNE# N2 Asynch GTL+ Input **IMPSEL** F6 Power/Other Input INIT# РЗ Asynch GTL+ Input ITP_CLK0 AK3 TAP Input ITP_CLK1 AJ3 TAP Input LINT0 K1 Asynch GTL+ Input LINT1 Asynch GTL+ L1 Input LL_ID0 V2 Power/Other Output LL_ID1 AA2 Power/Other Output LOCK# С3 Common Clock Input/Output MCERR# AB3 Input/Output Common Clock MSID0 W1 Power/Other Input MSID1 V1 Power/Other Input Output or Input/Output PROCHOT# AL2 Asynch GTL+ **PWRGOOD** N1 Power/Other Input REQ0# K4 Source Synch Input/Output REQ1# J5 Input/Output Source Synch REQ2# M6 Source Synch Input/Output REQ3# K6 Source Synch Input/Output REQ4# J6 Source Synch Input/Output RESERVED A20 AC4 RESERVED RESERVED AE4 RESERVED AE6 **RESERVED** AH2 RESERVED C9 **RESERVED** D1 RESERVED D14 RESERVED D16 RESERVED E23 RESERVED E6 RESERVED E7 RESERVED F23 **RESERVED** F29 RESERVED G10 **RESERVED** N4

Table 4-1. Alphabetical Land Assignments

Land Name	Land #	Signal Buffer Type	Direction
RESERVED	N5		
RESERVED	P5		
RESERVED	G6		
RESET#	G23	Common Clock	Input
RS0#	В3	Common Clock	Input
RS1#	F5	Common Clock	Input
RS2#	А3	Common Clock	Input
RSP#	H4	Common Clock	Input
SKTOCC#	AE8	Power/Other	Output
SMI#	P2	Asynch GTL+	Input
STPCLK#	МЗ	Asynch GTL+	Input
TCK	AE1	TAP	Input
TDI	AD1	TAP	Input
TDO	AF1	TAP	Output
TESTHI0	F26	Power/Other	Input
TESTHI1	W3	Power/Other	Input
TESTHI2	F25	Power/Other	Input
TESTHI3	G25	Power/Other	Input
TESTHI4	G27	Power/Other	Input
TESTHI5	G26	Power/Other	Input
TESTHI6	G24	Power/Other	Input
TESTHI7	F24	Power/Other	Input
TESTHI8	G3	Power/Other	Input
TESTHI9	G4	Power/Other	Input
TESTHI10	H5	Power/Other	Input
TESTHI11	P1	Power/Other	Input
TESTHI12	W2	Power/Other	Input
TESTHI13	L2	Asynch GTL+	Input
THERMDA	AL1	Power/Other	
THERMDC	AK1	Power/Other	
THERMTRIP#	M2	Asynch GTL+	Output
TMS	AC1	TAP	Input
TRDY#	E3	Common Clock	Input
TRST#	AG1	TAP	Input
VCC	AA8	Power/Other	
VCC	AB8	Power/Other	
VCC	AC23	Power/Other	
VCC	AC24	Power/Other	
VCC	AC25	Power/Other	
VCC	AC26	Power/Other	

Table 4-1. Alphabetical Land Assignments

Land Signal Buffer **Land Name Direction** Type VCC AC27 Power/Other VCC AC28 Power/Other VCC AC29 Power/Other VCC AC30 Power/Other VCC AC8 Power/Other VCC AD23 Power/Other VCC AD24 Power/Other VCC AD25 Power/Other VCC AD26 Power/Other VCC AD27 Power/Other VCC AD28 Power/Other VCC AD29 Power/Other VCC AD30 Power/Other VCC AD8 Power/Other VCC AE11 Power/Other VCC AE12 Power/Other VCC AE14 Power/Other VCC AE15 Power/Other VCC AE18 Power/Other VCC AE19 Power/Other VCC AE21 Power/Other VCC AE22 Power/Other VCC AE23 Power/Other VCC AE9 Power/Other VCC AF11 Power/Other VCC AF12 Power/Other VCC AF14 Power/Other VCC AF15 Power/Other VCC AF18 Power/Other VCC AF19 Power/Other AF21 VCC Power/Other VCC AF22 Power/Other VCC AF8 Power/Other AF9 VCC Power/Other AG11 VCC Power/Other VCC AG12 Power/Other VCC AG14 Power/Other VCC AG15 Power/Other VCC AG18 Power/Other VCC AG19 Power/Other

Table 4-1. Alphabetical Land Assignments

Assignments								
Land Name	Land #	Signal Buffer Type	Direction					
VCC	AG21	Power/Other						
VCC	AG22	Power/Other						
VCC	AG25	Power/Other						
VCC	AG26	Power/Other						
VCC	AG27	Power/Other						
VCC	AG28	Power/Other						
VCC	AG29	Power/Other						
VCC	AG30	Power/Other						
VCC	AG8	Power/Other						
VCC	AG9	Power/Other						
VCC	AH11	Power/Other						
VCC	AH12	Power/Other						
VCC	AH14	Power/Other						
VCC	AH15	Power/Other						
VCC	AH18	Power/Other						
VCC	AH19	Power/Other						
VCC	AH21	Power/Other						
VCC	AH22	Power/Other						
VCC	AH25	Power/Other						
VCC	AH26	Power/Other						
VCC	AH27	Power/Other						
VCC	AH28	Power/Other						
VCC	AH29	Power/Other						
VCC	AH30	Power/Other						
VCC	AH8	Power/Other						
VCC	AH9	Power/Other						
VCC	AJ11	Power/Other						
VCC	AJ12	Power/Other						
VCC	AJ14	Power/Other						
VCC	AJ15	Power/Other						
VCC	AJ18	Power/Other						
VCC	AJ19	Power/Other						
VCC	AJ21	Power/Other						
VCC	AJ22	Power/Other						
VCC	AJ25	Power/Other						
VCC	AJ26	Power/Other						
VCC	AJ8	Power/Other						
VCC	AJ9	Power/Other						
VCC	AK11	Power/Other						
VCC	AK12	Power/Other						

Table 4-1. Alphabetical Land Assignments

Signal Buffer Land **Land Name Direction** Type VCC AK14 Power/Other VCC AK15 Power/Other VCC AK18 Power/Other VCC AK19 Power/Other VCC AK21 Power/Other VCC AK22 Power/Other VCC AK25 Power/Other VCC AK26 Power/Other VCC AK8 Power/Other VCC AK9 Power/Other VCC AL11 Power/Other VCC AL12 Power/Other VCC AL14 Power/Other VCC AL15 Power/Other VCC AL18 Power/Other VCC AL19 Power/Other VCC AL21 Power/Other VCC AL22 Power/Other VCC AL25 Power/Other VCC AL26 Power/Other VCC AL29 Power/Other VCC AL30 Power/Other VCC AL8 Power/Other VCC AL9 Power/Other VCC AM11 Power/Other VCC AM12 Power/Other VCC AM14 Power/Other VCC AM15 Power/Other VCC AM18 Power/Other VCC AM19 Power/Other VCC AM21 Power/Other VCC AM22 Power/Other VCC AM25 Power/Other VCC AM26 Power/Other VCC AM29 Power/Other VCC AM30 Power/Other VCC AM8 Power/Other VCC AM9 Power/Other VCC AN11 Power/Other VCC AN12 Power/Other

Table 4-1. Alphabetical Land Assignments

Land Name	Land #	Signal Buffer Type	Direction
VCC	AN14	Power/Other	
VCC	AN15	Power/Other	
VCC	AN18	Power/Other	
VCC	AN19	Power/Other	
VCC	AN21	Power/Other	
VCC	AN22	Power/Other	
VCC	AN25	Power/Other	
VCC	AN26	Power/Other	
VCC	AN29	Power/Other	
VCC	AN30	Power/Other	
VCC	AN8	Power/Other	
VCC	AN9	Power/Other	
VCC	J10	Power/Other	
VCC	J11	Power/Other	
VCC	J12	Power/Other	
VCC	J13	Power/Other	
VCC	J14	Power/Other	
VCC	J15	Power/Other	
VCC	J18	Power/Other	
VCC	J19	Power/Other	
VCC	J20	Power/Other	
VCC	J21	Power/Other	
VCC	J22	Power/Other	
VCC	J23	Power/Other	
VCC	J24	Power/Other	
VCC	J25	Power/Other	
VCC	J26	Power/Other	
VCC	J27	Power/Other	
VCC	J28	Power/Other	
VCC	J29	Power/Other	
VCC	J30	Power/Other	
VCC	J8	Power/Other	
VCC	J9	Power/Other	
VCC	K23	Power/Other	
VCC	K24	Power/Other	
VCC	K25	Power/Other	
VCC	K26	Power/Other	
VCC	K27	Power/Other	
VCC	K28	Power/Other	
VCC	K29	Power/Other	

Table 4-1. Alphabetical Land Assignments

Land Signal Buffer **Land Name Direction** Type VCC K30 Power/Other VCC K8 Power/Other VCC Power/Other VCC M23 Power/Other VCC M24 Power/Other VCC M25 Power/Other VCC M26 Power/Other VCC M27 Power/Other VCC M28 Power/Other VCC M29 Power/Other VCC M30 Power/Other VCC M8 Power/Other VCC N23 Power/Other VCC N24 Power/Other VCC N25 Power/Other VCC N26 Power/Other VCC N27 Power/Other VCC N28 Power/Other VCC N29 Power/Other VCC N30 Power/Other VCC N8 Power/Other P8 VCC Power/Other VCC R8 Power/Other VCC T23 Power/Other VCC T24 Power/Other VCC T25 Power/Other VCC T26 Power/Other VCC T27 Power/Other VCC T28 Power/Other VCC T29 Power/Other VCC T30 Power/Other VCC T8 Power/Other VCC U23 Power/Other VCC U24 Power/Other VCC U25 Power/Other VCC U26 Power/Other VCC U27 Power/Other VCC U28 Power/Other VCC U29 Power/Other VCC U30 Power/Other

Table 4-1. Alphabetical Land Assignments

VCC VCC	and # J8	Signal Buffer Type	Direction
VCC	J8		
		Power/Other	
	V8	Power/Other	
VCC V	V 23	Power/Other	
VCC V	V 24	Power/Other	
VCC V	V 25	Power/Other	
VCC V	V 26	Power/Other	
VCC V	V27	Power/Other	
VCC V	V 28	Power/Other	
VCC V	V 29	Power/Other	
VCC V	V 30	Power/Other	
VCC \	N8	Power/Other	
VCC Y	′23	Power/Other	
VCC Y	′24	Power/Other	
VCC Y	′25	Power/Other	
VCC Y	′26	Power/Other	
VCC Y	′27	Power/Other	
VCC Y	′28	Power/Other	
VCC Y	′29	Power/Other	
VCC Y	′30	Power/Other	
VCC ,	Y8	Power/Other	
VCC_MB_ REGULATION A	N5	Power/Other	Output
VCC_SENSE A	N3	Power/Other	Output
VCCA A	.23	Power/Other	
VCCIOPLL C	23	Power/Other	
VCCPLL D	23	Power/Other	Input
VID0 A	.M2	Power/Other	Output
VID1 A	L5	Power/Other	Output
VID2 A	М3	Power/Other	Output
VID3 A	L6	Power/Other	Output
VID4 A	K4	Power/Other	Output
VID5 A	L4	Power/Other	Output
VSS A	12	Power/Other	
VSS A	15	Power/Other	
VSS A	18	Power/Other	
VSS	A2	Power/Other	
VSS A	\21	Power/Other	
VSS A	24	Power/Other	
VSS	46	Power/Other	
VSS	4 9	Power/Other	
VSS A	A23	Power/Other	

Table 4-1. Alphabetical Land Assignments

Signal Buffer Land **Land Name Direction** Type VSS AA24 Power/Other VSS Power/Other AA25 VSS AA26 Power/Other VSS AA27 Power/Other VSS AA28 Power/Other VSS AA29 Power/Other VSS AA3 Power/Other VSS AA30 Power/Other VSS AA6 Power/Other VSS AA7 Power/Other VSS AB1 Power/Other VSS AB23 Power/Other VSS AB24 Power/Other VSS AB25 Power/Other VSS AB26 Power/Other VSS AB27 Power/Other AB28 VSS Power/Other VSS AB29 Power/Other VSS AB30 Power/Other VSS AB7 Power/Other VSS AC3 Power/Other VSS AC6 Power/Other VSS AC7 Power/Other VSS AD4 Power/Other VSS AD7 Power/Other VSS AE10 Power/Other VSS AE13 Power/Other VSS AE16 Power/Other VSS AE17 Power/Other VSS AE2 Power/Other AE20 VSS Power/Other VSS AE24 Power/Other VSS AE25 Power/Other VSS AE26 Power/Other VSS AE27 Power/Other VSS AE28 Power/Other AE29 VSS Power/Other VSS AE30 Power/Other VSS AE5 Power/Other VSS AE7 Power/Other

Table 4-1. Alphabetical Land Assignments

Land Name	Land #	Signal Buffer Type	Direction
VSS	AF10	Power/Other	
VSS	AF13	Power/Other	
VSS	AF16	Power/Other	
VSS	AF17	Power/Other	
VSS	AF20	Power/Other	
VSS	AF23	Power/Other	
VSS	AF24	Power/Other	
VSS	AF25	Power/Other	
VSS	AF26	Power/Other	
VSS	AF27	Power/Other	
VSS	AF28	Power/Other	
VSS	AF29	Power/Other	
VSS	AF3	Power/Other	
VSS	AF30	Power/Other	
VSS	AF6	Power/Other	
VSS	AF7	Power/Other	
VSS	AG10	Power/Other	
VSS	AG13	Power/Other	
VSS	AG16	Power/Other	
VSS	AG17	Power/Other	
VSS	AG20	Power/Other	
VSS	AG23	Power/Other	
VSS	AG24	Power/Other	
VSS	AG7	Power/Other	
VSS	AH1	Power/Other	
VSS	AH10	Power/Other	
VSS	AH13	Power/Other	
VSS	AH16	Power/Other	
VSS	AH17	Power/Other	
VSS	AH20	Power/Other	
VSS	AH23	Power/Other	
VSS	AH24	Power/Other	
VSS	AH3	Power/Other	
VSS	AH6	Power/Other	
VSS	AH7	Power/Other	
VSS	AJ10	Power/Other	
VSS	AJ13	Power/Other	
VSS	AJ16	Power/Other	
VSS	AJ17	Power/Other	
VSS	AJ20	Power/Other	

Table 4-1. Alphabetical Land Assignments

Land Signal Buffer **Land Name Direction** Type VSS AJ23 Power/Other VSS AJ24 Power/Other VSS AJ27 Power/Other VSS AJ28 Power/Other VSS AJ29 Power/Other VSS AJ30 Power/Other VSS AJ4 Power/Other VSS AJ7 Power/Other AK10 VSS Power/Other VSS AK13 Power/Other VSS AK16 Power/Other AK17 VSS Power/Other VSS AK2 Power/Other VSS AK20 Power/Other VSS AK23 Power/Other VSS AK24 Power/Other VSS AK27 Power/Other VSS AK28 Power/Other VSS AK29 Power/Other VSS AK30 Power/Other VSS AK5 Power/Other VSS AK7 Power/Other VSS AL10 Power/Other VSS AL13 Power/Other VSS AL16 Power/Other VSS AL17 Power/Other VSS AL20 Power/Other VSS AL23 Power/Other VSS AL24 Power/Other VSS AL27 Power/Other AL28 VSS Power/Other VSS AL3 Power/Other VSS AL7 Power/Other VSS AM1 Power/Other AM10 VSS Power/Other VSS AM13 Power/Other AM16 VSS Power/Other VSS AM17 Power/Other VSS AM20 Power/Other VSS AM23 Power/Other

Table 4-1. Alphabetical Land Assignments

Assignments				
Land Name	Land #	Signal Buffer Type	Direction	
VSS	AM24	Power/Other		
VSS	AM27	Power/Other		
VSS	AM28	Power/Other		
VSS	AM4	Power/Other		
VSS	AN1	Power/Other		
VSS	AN10	Power/Other		
VSS	AN13	Power/Other		
VSS	AN16	Power/Other		
VSS	AN17	Power/Other		
VSS	AN2	Power/Other		
VSS	AN20	Power/Other		
VSS	AN23	Power/Other		
VSS	AN24	Power/Other		
VSS	AN27	Power/Other		
VSS	AN28	Power/Other		
VSS	B1	Power/Other		
VSS	B11	Power/Other		
VSS	B14	Power/Other		
VSS	B17	Power/Other		
VSS	B20	Power/Other		
VSS	B24	Power/Other		
VSS	B5	Power/Other		
VSS	В8	Power/Other		
VSS	C10	Power/Other		
VSS	C13	Power/Other		
VSS	C16	Power/Other		
VSS	C19	Power/Other		
VSS	C22	Power/Other		
VSS	C24	Power/Other		
VSS	C4	Power/Other		
VSS	C7	Power/Other		
VSS	D12	Power/Other		
VSS	D15	Power/Other		
VSS	D18	Power/Other		
VSS	D21	Power/Other		
VSS	D24	Power/Other		
VSS	D3	Power/Other		
VSS	D5	Power/Other		
VSS	D6	Power/Other		
VSS	D9	Power/Other		

Table 4-1. Alphabetical Land Assignments

Land Signal Buffer **Land Name Direction** Type VSS E11 Power/Other VSS E14 Power/Other VSS E17 Power/Other VSS E2 Power/Other VSS E20 Power/Other VSS E25 Power/Other VSS E26 Power/Other VSS E27 Power/Other VSS E28 Power/Other VSS E29 Power/Other VSS E8 Power/Other VSS F10 Power/Other VSS F13 Power/Other VSS F16 Power/Other VSS F19 Power/Other VSS F22 Power/Other VSS F4 Power/Other F7 VSS Power/Other VSS G1 Power/Other VSS H10 Power/Other VSS H11 Power/Other VSS H12 Power/Other VSS H13 Power/Other VSS H14 Power/Other VSS H17 Power/Other VSS H18 Power/Other VSS H19 Power/Other VSS H20 Power/Other VSS H21 Power/Other VSS H22 Power/Other H23 VSS Power/Other VSS H24 Power/Other VSS H25 Power/Other H26 VSS Power/Other VSS H27 Power/Other VSS H28 Power/Other VSS Н3 Power/Other VSS H6 Power/Other VSS H7 Power/Other VSS Н8 Power/Other

Table 4-1. Alphabetical Land Assignments

Land Name	Land #	Signal Buffer Type	Direction
VSS	H9	Power/Other	
VSS	J4	Power/Other	
VSS	J7	Power/Other	
VSS	K2	Power/Other	
VSS	K5	Power/Other	
VSS	K7	Power/Other	
VSS	L23	Power/Other	
VSS	L24	Power/Other	
VSS	L25	Power/Other	
VSS	L26	Power/Other	
VSS	L27	Power/Other	
VSS	L28	Power/Other	
VSS	L29	Power/Other	
VSS	L3	Power/Other	
VSS	L30	Power/Other	
VSS	L6	Power/Other	
VSS	L7	Power/Other	
VSS	M1	Power/Other	
VSS	M7	Power/Other	
VSS	N3	Power/Other	
VSS	N6	Power/Other	
VSS	N7	Power/Other	
VSS	P23	Power/Other	
VSS	P24	Power/Other	
VSS	P25	Power/Other	
VSS	P26	Power/Other	
VSS	P27	Power/Other	
VSS	P28	Power/Other	
VSS	P29	Power/Other	
VSS	P30	Power/Other	
VSS	P4	Power/Other	
VSS	P7	Power/Other	
VSS	R2	Power/Other	
VSS	R23	Power/Other	
VSS	R24	Power/Other	
VSS	R25	Power/Other	
VSS	R26	Power/Other	
VSS	R27	Power/Other	
VSS	R28	Power/Other	
VSS	R29	Power/Other	

Table 4-1. Alphabetical Land Assignments

Land Signal Buffer **Land Name Direction** Type VSS R30 Power/Other VSS R5 Power/Other VSS Power/Other VSS Т3 Power/Other T6 VSS Power/Other VSS T7 Power/Other VSS U1 Power/Other VSS U7 Power/Other VSS V23 Power/Other VSS V24 Power/Other VSS V25 Power/Other VSS V26 Power/Other VSS V27 Power/Other VSS V28 Power/Other VSS V29 Power/Other VSS ٧3 Power/Other VSS V30 Power/Other VSS ٧6 Power/Other VSS ٧7 Power/Other VSS W4 Power/Other VSS W7 Power/Other Y2 VSS Power/Other VSS Y5 Power/Other VSS Y7 Power/Other VSS_MB_ REGULATION AN6 Power/Other Output VSS_SENSE AN4 Power/Other Output **VSSA** Power/Other

Table 4-1. Alphabetical Land Assignments

Land Name	Land #	Signal Buffer Type	Direction
VTT	A25	Power/Other	
VTT	A26	Power/Other	
VTT	A27	Power/Other	
VTT	A28	Power/Other	
VTT	A29	Power/Other	
VTT	A30	Power/Other	
VTT	B25	Power/Other	
VTT	B26	Power/Other	
VTT	B27	Power/Other	
VTT	B28	Power/Other	
VTT	B29	Power/Other	
VTT	B30	Power/Other	
VTT	C25	Power/Other	
VTT	C26	Power/Other	
VTT	C27	Power/Other	
VTT	C28	Power/Other	
VTT	C29	Power/Other	
VTT	C30	Power/Other	
VTT	D25	Power/Other	
VTT	D26	Power/Other	
VTT	D27	Power/Other	
VTT	D28	Power/Other	
VTT	D29	Power/Other	
VTT	D30	Power/Other	
VTT_OUT_LEFT	J1	Power/Other	Output
VTT_OUT_RIGHT	AA1	Power/Other	Output
VTT_SEL	F27	Power/Other	Output
VTTPWRGD	AM6	Power/Other	Input

Land #

Α2

Direction

Input

Table 4-2. Numerical Land Assignment

Land Name

VSS

Signal Buffer Type

Power/Other

Direction

Table 4-2. Numerical Land Assignment

Land #	Land Name	Signal Buffer Type
B13	FC19	Power/Other
B14	VSS	Power/Other
B15	D53#	Source Synch
B16	D55#	Source Synch
B17	VSS	Power/Other
B18	D57#	Source Synch
B19	D60#	Source Synch
B20	VSS	Power/Other
B21	D59#	Source Synch
B22	D63#	Source Synch
B23	VSSA	Power/Other
B24	VSS	Power/Other
B25	VTT	Power/Other
B26	VTT	Power/Other
B27	VTT	Power/Other
B28	VTT	Power/Other
B29	VTT	Power/Other
B30	VTT	Power/Other
C1	DRDY#	Common Cloc
C2	BNR#	Common Cloc
C3	LOCK#	Common Cloc
C4	VSS	Power/Other
C5	D1#	Source Synch
C6	D3#	Source Synch
C7	VSS	Power/Other
C8	DSTBN0#	Source Synch
C9	RESERVED	
C10	VSS	Power/Other
C11	D11#	Source Synch
C12	D14#	Source Synch
C13	VSS	Power/Other
C14	D52#	Source Synch
C15	D51#	Source Synch
C16	VSS	Power/Other
C17	DSTBP3#	Source Synch
C18	D54#	Source Synch
C19	VSS	Power/Other
C20	DBI3#	Source Synch
C21	D58#	Source Synch
C22	VSS	Power/Other
C23	VCCIOPLL	Power/Other

<i>,</i>				D.10			
А3	RS2#	Common Clock	Input	B14	VSS	Power/Other	
A4	D2#	Source Synch	Input/Output	B15	D53#	Source Synch	Input/Output
A5	D4#	Source Synch	Input/Output	B16	D55#	Source Synch	Input/Output
A6	VSS	Power/Other		B17	VSS	Power/Other	
A7	D7#	Source Synch	Input/Output	B18	D57#	Source Synch	Input/Output
A8	DBI0#	Source Synch	Input/Output	B19	D60#	Source Synch	Input/Output
A9	VSS	Power/Other		B20	VSS	Power/Other	
A10	D8#	Source Synch	Input/Output	B21	D59#	Source Synch	Input/Output
A11	D9#	Source Synch	Input/Output	B22	D63#	Source Synch	Input/Output
A12	VSS	Power/Other		B23	VSSA	Power/Other	
A13	COMP0	Power/Other	Input	B24	VSS	Power/Other	
A14	D50#	Source Synch	Input/Output	B25	VTT	Power/Other	
A15	VSS	Power/Other		B26	VTT	Power/Other	
A16	DSTBN3#	Source Synch	Input/Output	B27	VTT	Power/Other	
A17	D56#	Source Synch	Input/Output	B28	VTT	Power/Other	
A18	VSS	Power/Other		B29	VTT	Power/Other	
A19	D61#	Source Synch	Input/Output	B30	VTT	Power/Other	
A20	RESERVED			C1	DRDY#	Common Clock	Input/Output
A21	VSS	Power/Other		C2	BNR#	Common Clock	Input/Output
A22	D62#	Source Synch	Input/Output	C3	LOCK#	Common Clock	Input/Output
A23	VCCA	Power/Other		C4	VSS	Power/Other	
A24	VSS	Power/Other		C5	D1#	Source Synch	Input/Output
A25	VTT	Power/Other		C6	D3#	Source Synch	Input/Output
A26	VTT	Power/Other		C7	VSS	Power/Other	
A27	VTT	Power/Other		C8	DSTBN0#	Source Synch	Input/Output
A28	VTT	Power/Other		C9	RESERVED		
A29	VTT	Power/Other		C10	VSS	Power/Other	
A30	VTT	Power/Other		C11	D11#	Source Synch	Input/Output
B1	VSS	Power/Other		C12	D14#	Source Synch	Input/Output
B2	DBSY#	Common Clock	Input/Output	C13	VSS	Power/Other	
В3	RS0#	Common Clock	Input	C14	D52#	Source Synch	Input/Output
B4	D0#	Source Synch	Input/Output	C15	D51#	Source Synch	Input/Output
B5	VSS	Power/Other		C16	VSS	Power/Other	
В6	D5#	Source Synch	Input/Output	C17	DSTBP3#	Source Synch	Input/Output
В7	D6#	Source Synch	Input/Output	C18	D54#	Source Synch	Input/Output
B8	VSS	Power/Other		C19	VSS	Power/Other	
В9	DSTBP0#	Source Synch	Input/Output	C20	DBI3#	Source Synch	Input/Output
B10	D10#	Source Synch	Input/Output	C21	D58#	Source Synch	Input/Output
B11	VSS	Power/Other		C22	VSS	Power/Other	
B12	D13#	Source Synch	Input/Output	C23	VCCIOPLL	Power/Other	

Table 4-2. Numerical Land Assignment

Table 4-2. Numerical Land Assignment

Land #	Land Name	Signal Buffer Type	Direction
C24	VSS	Power/Other	
C25	VTT	Power/Other	
C26	VTT	Power/Other	
C27	VTT	Power/Other	
C28	VTT	Power/Other	
C29	VTT	Power/Other	
C30	VTT	Power/Other	
D1	RESERVED		
D2	ADS#	Common Clock	Input/Output
D3	VSS	Power/Other	
D4	HIT#	Common Clock	Input/Output
D5	VSS	Power/Other	
D6	VSS	Power/Other	
D7	D20#	Source Synch	Input/Output
D8	D12#	Source Synch	Input/Output
D9	VSS	Power/Other	
D10	D22#	Source Synch	Input/Output
D11	D15#	Source Synch	Input/Output
D12	VSS	Power/Other	
D13	D25#	Source Synch	Input/Output
D14	RESERVED		
D15	VSS	Power/Other	
D16	RESERVED		
D17	D49#	Source Synch	Input/Output
D18	VSS	Power/Other	
D19	DBI2#	Source Synch	Input/Output
D20	D48#	Source Synch	Input/Output
D21	VSS	Power/Other	
D22	D46#	Source Synch	Input/Output
D23	VCCPLL	Power/Other	Input
D24	VSS	Power/Other	
D25	VTT	Power/Other	
D26	VTT	Power/Other	
D27	VTT	Power/Other	
D28	VTT	Power/Other	
D29	VTT	Power/Other	
D30	VTT	Power/Other	
E2	VSS	Power/Other	
E3	TRDY#	Common Clock	Input
E4	HITM#	Common Clock	Input/Output
E5	FC20	Power/Other	Input

lable	4-2. Numeric	al Land Ass	ignment
Land #	Land Name	Signal Buffer Type	Direction
E6	RESERVED		
E7	RESERVED		
E8	VSS	Power/Other	
E9	D19#	Source Synch	Input/Output
E10	D21#	Source Synch	Input/Output
E11	VSS	Power/Other	
E12	DSTBP1#	Source Synch	Input/Output
E13	D26#	Source Synch	Input/Output
E14	VSS	Power/Other	
E15	D33#	Source Synch	Input/Output
E16	D34#	Source Synch	Input/Output
E17	VSS	Power/Other	
E18	D39#	Source Synch	Input/Output
E19	D40#	Source Synch	Input/Output
E20	VSS	Power/Other	
E21	D42#	Source Synch	Input/Output
E22	D45#	Source Synch	Input/Output
E23	RESERVED		
E24	FC10	Power/Other	Input
E25	VSS	Power/Other	
E26	VSS	Power/Other	
E27	VSS	Power/Other	
E28	VSS	Power/Other	
E29	VSS	Power/Other	
F2	FC5	Common Clock	Input
F3	BR0#	Common Clock	Input/Output
F4	VSS	Power/Other	
F5	RS1#	Common Clock	Input
F6	IMPSEL	Power/Other	Input
F7	VSS	Power/Other	
F8	D17#	Source Synch	Input/Output
F9	D18#	Source Synch	Input/Output
F10	VSS	Power/Other	
F11	D23#	Source Synch	Input/Output
F12	D24#	Source Synch	Input/Output
F13	VSS	Power/Other	
F14	D28#	Source Synch	Input/Output
F15	D30#	Source Synch	Input/Output
F16	VSS	Power/Other	
F17	D37#	Source Synch	Input/Output
F18	D38#	Source Synch	Input/Output

G27

G28

G29

G30

TESTHI4

BCLK1

BSEL0

BSEL2

Power/Other

Clock

Power/Other

Power/Other

Table 4-2. Numerical Land Assignment

Land Signal Buffer **Land Name Direction** Type F19 VSS Power/Other D41# F20 Source Synch Input/Output F21 D43# Source Synch Input/Output F22 VSS Power/Other F23 RESERVED F24 TESTHI7 Power/Other Input F25 TESTHI2 Power/Other Input TESTHI0 F26 Power/Other Input VTT_SEL F27 Power/Other Output F28 BCLK0 Clock Input F29 RESERVED G1 VSS Power/Other G2 COMP2 Power/Other Input TESTHI8 G3 Power/Other Input G4 TESTHI9 Power/Other Input G5 FC7 Source Synch Output G6 RESERVED DEFER# G7 Common Clock Input G8 BPRI# Common Clock Input G9 D16# Input/Output Source Synch G10 RESERVED DBI1# G11 Source Synch Input/Output G12 DSTBN1# Source Synch Input/Output D27# G13 Source Synch Input/Output G14 D29# Source Synch Input/Output G15 D31# Source Synch Input/Output G16 D32# Input/Output Source Synch G17 D36# Source Synch Input/Output G18 D35# Source Synch Input/Output G19 DSTBP2# Source Synch Input/Output G20 DSTBN2# Input/Output Source Synch G21 D44# Source Synch Input/Output G22 D47# Source Synch Input/Output RESET# G23 Common Clock Input TESTHI6 G24 Power/Other Input G25 TESTHI3 Power/Other Input G26 TESTHI5 Power/Other Input

Table 4-2. Numerical Land Assignment

	4-2. Numerica		
Land #	Land Name	Signal Buffer Type	Direction
H1	GTLREF0	Power/Other	Input
H2	GTLREF1	Power/Other	Input
НЗ	VSS	Power/Other	
H4	RSP#	Common Clock	Input
H5	TESTHI10	Power/Other	Input
H6	VSS	Power/Other	
H7	VSS	Power/Other	
H8	VSS	Power/Other	
H9	VSS	Power/Other	
H10	VSS	Power/Other	
H11	VSS	Power/Other	
H12	VSS	Power/Other	
H13	VSS	Power/Other	
H14	VSS	Power/Other	
H15	DP1#	Common Clock	Input/Output
H16	DP2#	Common Clock	Input/Output
H17	VSS	Power/Other	
H18	VSS	Power/Other	
H19	VSS	Power/Other	
H20	VSS	Power/Other	
H21	VSS	Power/Other	
H22	VSS	Power/Other	
H23	VSS	Power/Other	
H24	VSS	Power/Other	
H25	VSS	Power/Other	
H26	VSS	Power/Other	
H27	VSS	Power/Other	
H28	VSS	Power/Other	
H29	GTLREF_SEL	Power/Other	Output
H30	BSEL1	Power/Other	Output
J1	VTT_OUT_LEFT	Power/Other	Output
J2	FC3	Power/Other	Input
J3	FC22	Power/Other	Input
J4	VSS	Power/Other	
J5	REQ1#	Source Synch	Input/Output
J6	REQ4#	Source Synch	Input/Output
J7	VSS	Power/Other	
J8	VCC	Power/Other	
J9	VCC	Power/Other	
J10	VCC	Power/Other	
J11	VCC	Power/Other	
		1	

Datasheet 58

Input

Input

Output

Output

Table 4-2. Numerical Land Assignment

Table 4-2. Numerical Land Assignment

Land #	Land Name	Signal Buffer Type	Direction
J12	VCC	Power/Other	
J13	VCC	Power/Other	
J14	VCC	Power/Other	
J15	VCC	Power/Other	
J16	DP0#	Common Clock	Input/Output
J17	DP3#	Common Clock	Input/Output
J18	VCC	Power/Other	
J19	VCC	Power/Other	
J20	VCC	Power/Other	
J21	VCC	Power/Other	
J22	VCC	Power/Other	
J23	VCC	Power/Other	
J24	VCC	Power/Other	
J25	VCC	Power/Other	
J26	VCC	Power/Other	
J27	VCC	Power/Other	
J28	VCC	Power/Other	
J29	VCC	Power/Other	
J30	VCC	Power/Other	
K1	LINT0	Asynch GTL+	Input
K2	VSS	Power/Other	
K3	A20M#	Asynch GTL+	Input
K4	REQ0#	Source Synch	Input/Output
K5	VSS	Power/Other	
K6	REQ3#	Source Synch	Input/Output
K7	VSS	Power/Other	
K8	VCC	Power/Other	
K23	VCC	Power/Other	
K24	VCC	Power/Other	
K25	VCC	Power/Other	
K26	VCC	Power/Other	
K27	VCC	Power/Other	
K28	VCC	Power/Other	
K29	VCC	Power/Other	
K30	VCC	Power/Other	
L1	LINT1	Asynch GTL+	Input
L2	TESTHI13	Asynch GTL+	Input
L3	VSS	Power/Other	
L4	A6#	Source Synch	Input/Output
L5	A3#	Source Synch	Input/Output
L6	VSS	Power/Other	

Table	4-2. Numerica	al Land Ass	ignment
Land #	Land Name	Signal Buffer Type	Direction
L7	VSS	Power/Other	
L8	VCC	Power/Other	
L23	VSS	Power/Other	
L24	VSS	Power/Other	
L25	VSS	Power/Other	
L26	VSS	Power/Other	
L27	VSS	Power/Other	
L28	VSS	Power/Other	
L29	VSS	Power/Other	
L30	VSS	Power/Other	
M1	VSS	Power/Other	
M2	THERMTRIP#	Asynch GTL+	Output
МЗ	STPCLK#	Asynch GTL+	Input
M4	A7#	Source Synch	Input/Output
M5	A5#	Source Synch	Input/Output
M6	REQ2#	Source Synch	Input/Output
M7	VSS	Power/Other	
M8	VCC	Power/Other	
M23	VCC	Power/Other	
M24	VCC	Power/Other	
M25	VCC	Power/Other	
M26	VCC	Power/Other	
M27	VCC	Power/Other	
M28	VCC	Power/Other	
M29	VCC	Power/Other	
M30	VCC	Power/Other	
N1	PWRGOOD	Power/Other	Input
N2	IGNNE#	Asynch GTL+	Input
N3	VSS	Power/Other	
N4	RESERVED		
N5	RESERVED		
N6	VSS	Power/Other	
N7	VSS	Power/Other	
N8	VCC	Power/Other	
N23	VCC	Power/Other	
N24	VCC	Power/Other	
N25	VCC	Power/Other	
N26	VCC	Power/Other	
N27	VCC	Power/Other	
N28	VCC	Power/Other	
N29	VCC	Power/Other	

Table 4-2. Numerical Land Assignment

Land Signal Buffer **Land Name Direction** Type N30 VCC Power/Other Р1 TESTHI11 Power/Other Input P2 SMI# Asynch GTL+ Input РЗ INIT# Asynch GTL+ Input P4 VSS Power/Other P5 RESERVED P6 A4# Source Synch Input/Output P7 VSS Power/Other P8 VCC Power/Other P23 VSS Power/Other P24 VSS Power/Other P25 VSS Power/Other P26 VSS Power/Other P27 VSS Power/Other P28 VSS Power/Other P29 VSS Power/Other P30 VSS Power/Other COMP3 R1 Power/Other Input R2 VSS Power/Other R3 FERR#/PBE# Asynch GTL+ Output Input/Output R4 A8# Source Synch R5 VSS Power/Other R6 ADSTB0# Source Synch Input/Output VSS Power/Other R7 R8 VCC Power/Other R23 VSS Power/Other R24 VSS Power/Other R25 VSS Power/Other R26 VSS Power/Other R27 VSS Power/Other R28 VSS Power/Other R29 VSS Power/Other R30 VSS Power/Other T1 COMP1 Power/Other Input T2 FC4 Power/Other Input Т3 VSS Power/Other T4 A11# Input/Output Source Synch T5 A9# Source Synch Input/Output T6 VSS Power/Other T7 VSS Power/Other Т8 VCC Power/Other

Table 4-2. Numerical Land Assignment

Land #	Land Name	Signal Buffer Type	Direction
T23	VCC	Power/Other	
T24	VCC	Power/Other	
T25	VCC	Power/Other	
T26	VCC	Power/Other	
T27	VCC	Power/Other	
T28	VCC	Power/Other	
T29	VCC	Power/Other	
T30	VCC	Power/Other	
U1	VSS	Power/Other	
U2	AP0#	Common Clock	Input/Output
U3	AP1#	Common Clock	Input/Output
U4	A13#	Source Synch	Input/Output
U5	A12#	Source Synch	Input/Output
U6	A10#	Source Synch	Input/Output
U7	VSS	Power/Other	
U8	VCC	Power/Other	
U23	VCC	Power/Other	
U24	VCC	Power/Other	
U25	VCC	Power/Other	
U26	VCC	Power/Other	
U27	VCC	Power/Other	
U28	VCC	Power/Other	
U29	VCC	Power/Other	
U30	VCC	Power/Other	
V1	MSID1	Power/Other	Input
V2	LL_ID0	Power/Other	Output
V3	VSS	Power/Other	
V4	A15#	Source Synch	Input/Output
V5	A14#	Source Synch	Input/Output
V6	VSS	Power/Other	
V7	VSS	Power/Other	
V8	VCC	Power/Other	
V23	VSS	Power/Other	
V24	VSS	Power/Other	
V25	VSS	Power/Other	
V26	VSS	Power/Other	
V27	VSS	Power/Other	
V28	VSS	Power/Other	
V29	VSS	Power/Other	
V30	VSS	Power/Other	
W1	MSID0	Power/Other	Input

Table 4-2. Numerical Land Assignment

Land #	Land Name	Signal Buffer Type	Direction
W2	TESTHI12	Power/Other	Input
W3	TESTHI1	Power/Other	Input
W4	VSS		input
		Power/Other	Innut/Outnut
W5	A16#	Source Synch	Input/Output
W6	A18#	Source Synch	Input/Output
W7	VSS	Power/Other	
W8	VCC	Power/Other	
W23	VCC	Power/Other	
W24	VCC	Power/Other	
W25	VCC	Power/Other	
W26	VCC	Power/Other	
W27	VCC	Power/Other	
W28	VCC	Power/Other	
W29	VCC	Power/Other	
W30	VCC	Power/Other	
Y1	BOOTSELECT	Power/Other	Input
Y2	VSS	Power/Other	
Y3	FC17	Power/Other	Input
Y4	A20#	Source Synch	Input/Output
Y5	VSS	Power/Other	
Y6	A19#	Source Synch	Input/Output
Y7	VSS	Power/Other	
Y8	VCC	Power/Other	
Y23	VCC	Power/Other	
Y24	VCC	Power/Other	
Y25	VCC	Power/Other	
Y26	VCC	Power/Other	
Y27	VCC	Power/Other	
Y28	VCC	Power/Other	
Y29	VCC	Power/Other	
Y30	VCC	Power/Other	
AA1	VTT_OUT_RIGHT	Power/Other	Output
AA2	LL_ID1	Power/Other	Output
AA3	VSS	Power/Other	
AA4	A21#	Source Synch	Input/Output
AA5	A23#	Source Synch	Input/Output
AA6	VSS	Power/Other	
AA7	VSS	Power/Other	
AA8	VCC	Power/Other	
AA23	VSS	Power/Other	
AA24	VSS	Power/Other	

Table 4-2. Numerical Land Assignment

Table 4-2. Numerical Land Assignment				
Land #	Land Name	Signal Buffer Type	Direction	
AA25	VSS	Power/Other		
AA26	VSS	Power/Other		
AA27	VSS	Power/Other		
AA28	VSS	Power/Other		
AA29	VSS	Power/Other		
AA30	VSS	Power/Other		
AB1	VSS	Power/Other		
AB2	IERR#	Asynch GTL+	Output	
AB3	MCERR#	Common Clock	Input/Output	
AB4	A26#	Source Synch	Input/Output	
AB5	A24#	Source Synch	Input/Output	
AB6	A17#	Source Synch	Input/Output	
AB7	VSS	Power/Other		
AB8	VCC	Power/Other		
AB23	VSS	Power/Other		
AB24	VSS	Power/Other		
AB25	VSS	Power/Other		
AB26	VSS	Power/Other		
AB27	VSS	Power/Other		
AB28	VSS	Power/Other		
AB29	VSS	Power/Other		
AB30	VSS	Power/Other		
AC1	TMS	TAP	Input	
AC2	DBR#	Power/Other	Output	
AC3	VSS	Power/Other		
AC4	RESERVED			
AC5	A25#	Source Synch	Input/Output	
AC6	VSS	Power/Other		
AC7	VSS	Power/Other		
AC8	VCC	Power/Other		
AC23	VCC	Power/Other		
AC24	VCC	Power/Other		
AC25	VCC	Power/Other		
AC26	VCC	Power/Other		
AC27	VCC	Power/Other		
AC28	VCC	Power/Other		
AC29	VCC	Power/Other		
AC30	VCC	Power/Other		
AD1	TDI	TAP	Input	
AD2	BPM2#	Common Clock	Input/Output	
AD3	BINIT#	Common Clock	Input/Output	

Land

AD4

AD5

AD6

AD7

AD8

AD23

AD24

AD25

AD26

AD27

AD28

AD29

AD30

AE1

AE2

AE3

AE4

AE5

AE6

AE7

AE8

AE9

AE10

AE11

AE12

AE13

AE14

AE15

AE16

AE17

AE18

AE19

AE20

AE21

AE22

AE23

AE24

AE25

AE26

AE27

AE28

Table 4-2. Numerical Land Assignment

Land Name

VSS

ADSTB1#

A22#

VSS

VCC

VCC

VCC

VCC

VCC

VCC

VCC

VCC

VCC

TCK

VSS

FC18

RESERVED

VSS

RESERVED

VSS

SKTOCC#

VCC

VSS

VCC

VCC

VSS

VCC

VCC

VSS

VSS

VCC

VCC

VSS

VCC

VCC

VCC

VSS

VSS

VSS

VSS

VSS

Signal Buffer

Type

Power/Other

Source Synch

Source Synch

Power/Other

TAP

Power/Other

Direction Input/Output Input/Output Input Input Output

Table 4-2. Numerical Land Assignment

Land #	Land Name	Signal Buffer Type	Direction
AE29	VSS	Power/Other	
AE30	VSS	Power/Other	
AF1	TDO	TAP	Output
AF2	BPM4#	Common Clock	Input/Output
AF3	VSS	Power/Other	
AF4	A28#	Source Synch	Input/Output
AF5	A27#	Source Synch	Input/Output
AF6	VSS	Power/Other	
AF7	VSS	Power/Other	
AF8	VCC	Power/Other	
AF9	VCC	Power/Other	
AF10	VSS	Power/Other	
AF11	VCC	Power/Other	
AF12	VCC	Power/Other	
AF13	VSS	Power/Other	
AF14	VCC	Power/Other	
AF15	VCC	Power/Other	
AF16	VSS	Power/Other	
AF17	VSS	Power/Other	
AF18	VCC	Power/Other	
AF19	VCC	Power/Other	
AF20	VSS	Power/Other	
AF21	VCC	Power/Other	
AF22	VCC	Power/Other	
AF23	VSS	Power/Other	
AF24	VSS	Power/Other	
AF25	VSS	Power/Other	
AF26	VSS	Power/Other	
AF27	VSS	Power/Other	
AF28	VSS	Power/Other	
AF29	VSS	Power/Other	
AF30	VSS	Power/Other	
AG1	TRST#	TAP	Input
AG2	BPM3#	Common Clock	Input/Output
AG3	BPM5#	Common Clock	Input/Output
AG4	A30#	Source Synch	Input/Output
AG5	A31#	Source Synch	Input/Output
AG6	A29#	Source Synch	Input/Output
AG7	VSS	Power/Other	
AG8	VCC	Power/Other	
AG9	VCC	Power/Other	

Table 4-2. Numerical Land Assignment

nment Ta

Table 4-2. Numerical Land Assignment

Table 4-2. Numerical Land Assignmen			
Land #	Land Name	Signal Buffer Type	Direction
AG10	VSS	Power/Other	
AG11	VCC	Power/Other	
AG12	VCC	Power/Other	
AG13	VSS	Power/Other	
AG14	VCC	Power/Other	
AG15	VCC	Power/Other	
AG16	VSS	Power/Other	
AG17	VSS	Power/Other	
AG18	VCC	Power/Other	
AG19	VCC	Power/Other	
AG20	VSS	Power/Other	
AG21	VCC	Power/Other	
AG22	VCC	Power/Other	
AG23	VSS	Power/Other	
AG24	VSS	Power/Other	
AG25	VCC	Power/Other	
AG26	VCC	Power/Other	
AG27	VCC	Power/Other	
AG28	VCC	Power/Other	
AG29	VCC	Power/Other	
AG30	VCC	Power/Other	
AH1	VSS	Power/Other	
AH2	RESERVED		
AH3	VSS	Power/Other	
AH4	A32#	Source Synch	Input/Output
AH5	A33#	Source Synch	Input/Output
AH6	VSS	Power/Other	
AH7	VSS	Power/Other	
AH8	VCC	Power/Other	
AH9	VCC	Power/Other	
AH10	VSS	Power/Other	
AH11	VCC	Power/Other	
AH12	VCC	Power/Other	
AH13	VSS	Power/Other	
AH14	VCC	Power/Other	
AH15	VCC	Power/Other	
AH16	VSS	Power/Other	
AH17	VSS	Power/Other	
AH18	VCC	Power/Other	
AH19	VCC	Power/Other	
AH20	VSS	Power/Other	

Table	4-2. Numerio	ii Lana A33	igililicit
Land #	Land Name	Signal Buffer Type	Direction
AH21	VCC	Power/Other	
AH22	VCC	Power/Other	
AH23	VSS	Power/Other	
AH24	VSS	Power/Other	
AH25	VCC	Power/Other	
AH26	VCC	Power/Other	
AH27	VCC	Power/Other	
AH28	VCC	Power/Other	
AH29	VCC	Power/Other	
AH30	VCC	Power/Other	
AJ1	BPM1#	Common Clock	Input/Output
AJ2	BPM0#	Common Clock	Input/Output
AJ3	ITP_CLK1	TAP	Input
AJ4	VSS	Power/Other	
AJ5	A34#	Source Synch	Input/Output
AJ6	A35#	Source Synch	Input/Output
AJ7	VSS	Power/Other	
AJ8	VCC	Power/Other	
AJ9	VCC	Power/Other	
AJ10	VSS	Power/Other	
AJ11	VCC	Power/Other	
AJ12	VCC	Power/Other	
AJ13	VSS	Power/Other	
AJ14	VCC	Power/Other	
AJ15	VCC	Power/Other	
AJ16	VSS	Power/Other	
AJ17	VSS	Power/Other	
AJ18	VCC	Power/Other	
AJ19	VCC	Power/Other	
AJ20	VSS	Power/Other	
AJ21	VCC	Power/Other	
AJ22	VCC	Power/Other	
AJ23	VSS	Power/Other	
AJ24	VSS	Power/Other	
AJ25	VCC	Power/Other	
AJ26	VCC	Power/Other	
AJ27	VSS	Power/Other	
AJ28	VSS	Power/Other	
AJ29	VSS	Power/Other	
AJ30	VSS	Power/Other	
AK1	THERMDC	Power/Other	

AL7

AL8

AL9

AL10

AL11

AL12

VSS

VCC

VCC

VSS

VCC

VCC

Power/Other

Power/Other

Power/Other

Power/Other

Power/Other

Power/Other

Table 4-2. Numerical Land Assignment

Land Signal Buffer **Land Name Direction** Type AK2 VSS Power/Other ITP_CLK0 TAP AK3 Input AK4 VID4 Power/Other Output AK5 VSS Power/Other FORCEPR# AK6 Asynch GTL+ Input AK7 VSS Power/Other AK8 VCC Power/Other VCC AK9 Power/Other AK10 VSS Power/Other AK11 VCC Power/Other AK12 VCC Power/Other AK13 VSS Power/Other AK14 VCC Power/Other AK15 VCC Power/Other AK16 VSS Power/Other AK17 VSS Power/Other AK18 VCC Power/Other AK19 VCC Power/Other AK20 VSS Power/Other AK21 VCC Power/Other AK22 VCC Power/Other AK23 VSS Power/Other AK24 VSS Power/Other AK25 VCC Power/Other AK26 VCC Power/Other AK27 VSS Power/Other AK28 VSS Power/Other AK29 VSS Power/Other AK30 VSS Power/Other AL1 THERMDA Power/Other Output or PROCHOT# AL2 Asynch GTL+ Input/Output AL3 VSS Power/Other AL4 VID5 Power/Other Output AL5 VID1 Power/Other Output AL6 VID3 Power/Other Output

Table 4-2. Numerical Land Assignment

Land #	Land Name	Signal Buffer Type	Direction
AL13	VSS	Power/Other	
AL14	VCC	Power/Other	
AL15	VCC	Power/Other	
AL16	VSS	Power/Other	
AL17	VSS	Power/Other	
AL18	VCC	Power/Other	
AL19	VCC	Power/Other	
AL20	VSS	Power/Other	
AL21	VCC	Power/Other	
AL22	VCC	Power/Other	
AL23	VSS	Power/Other	
AL24	VSS	Power/Other	
AL25	VCC	Power/Other	
AL26	VCC	Power/Other	
AL27	VSS	Power/Other	
AL28	VSS	Power/Other	
AL29	VCC	Power/Other	
AL30	VCC	Power/Other	
AM1	VSS	Power/Other	
AM2	VID0	Power/Other	Output
AM3	VID2	Power/Other	Output
AM4	VSS	Power/Other	
AM5	FC11	Power/Other	Output
AM6	VTTPWRGD	Power/Other	Input
AM7	FC12	Power/Other	Output
AM8	VCC	Power/Other	
AM9	VCC	Power/Other	
AM10	VSS	Power/Other	
AM11	VCC	Power/Other	
AM12	VCC	Power/Other	
AM13	VSS	Power/Other	
AM14	VCC	Power/Other	
AM15	VCC	Power/Other	
AM16	VSS	Power/Other	
AM17	VSS	Power/Other	
AM18	VCC	Power/Other	
AM19	VCC	Power/Other	
AM20	VSS	Power/Other	
AM21	VCC	Power/Other	
AM22	VCC	Power/Other	
AM23	VSS	Power/Other	

Table 4-2. Numerical Land Assignment

Signal Buffer Type Land **Land Name** Direction AM24 VSS Power/Other AM25 VCC Power/Other AM26 VCC Power/Other AM27 VSS Power/Other AM28 VSS Power/Other AM29 VCC Power/Other AM30 VCC Power/Other AN1 VSS Power/Other AN2 VSS Power/Other AN3 VCC_SENSE Power/Other Output AN4 VSS_SENSE Power/Other Output VCC_MB_ REGULATION AN5 Power/Other Output VSS_MB_ REGULATION AN6 Power/Other Output

Power/Other

Power/Other

Power/Other

Power/Other

Power/Other

Output

FC16

VCC

VCC

VSS

VCC

AN7

AN8

AN9

AN10

AN11

Table 4-2. Numerical Land Assignment

Land #	Land Name	Signal Buffer Type	Direction
AN12	VCC	Power/Other	
AN13	VSS	Power/Other	
AN14	VCC	Power/Other	
AN15	VCC	Power/Other	
AN16	VSS	Power/Other	
AN17	VSS	Power/Other	
AN18	VCC	Power/Other	
AN19	VCC	Power/Other	
AN20	VSS	Power/Other	
AN21	VCC	Power/Other	
AN22	VCC	Power/Other	
AN23	VSS	Power/Other	
AN24	VSS	Power/Other	
AN25	VCC	Power/Other	
AN26	VCC	Power/Other	
AN27	VSS	Power/Other	
AN28	VSS	Power/Other	
AN29	VCC	Power/Other	
AN30	VCC	Power/Other	

4.2 Alphabetical Signals Reference

Table 4-3. Signal Description (Sheet 1 of 8)

Name	Type		Description	
A[35:3]#	Input/ Output	A[35:3]# (Address) define a 2 ³⁶ -phase 1 of the address phase, the transaction. In sub-phase 2, these signals must connect the processor FSB. A[35:3]# are prosource synchronous signals and ADSTB[1:0]#. On the active-to-inactive transition of the active-to-inactive transition.	nese signals transite signals transmit appropriate pins/latected by parity sidered are latched into the proof of RESET#, the	mit the address of a transaction type information. ands of all agents on the gnals AP[1:0]#. A[35:3]# are ne receiving buffers by processor samples a subset
		of the A[35:3]# signals to determ more details.	ine power-on confi	guration. See Section 6.1 for
A20M#	Input	If A20M# (Address-20 Mask) is a address bit 20 (A20#) before loo driving a read/write transaction o processor's address wrap-aroun only supported in real mode.	king up a line in ar in the bus. Assertir	ny internal cache and before ng A20M# emulates the 8086
		A20M# is an asynchronous signated following an Input/Output write in TRDY# assertion of the correspondents.	nstruction, it must b	be valid along with the
ADS#	Input/ Output	ADS# (Address Strobe) is assert address on the A[35:3]# and RE ADS# activation to begin parity of internal snoop, or deferred reply transaction.	Q[4:0]# signals. Al	Il bus agents observe the checking, address decode,
	Input/	Address strobes are used to late falling edges. Strobes are assoc		
ADSTB[1:0]#		Signals As	ssociated Strobe	
	Output	REQ[4:0]#, A[16:3]#	ADSTB0#	
		A[35:17]#	ADSTB1#	
AP[1:0]#	Input/ Output	AP[1:0]# (Address Parity) are dr A[35:3]#, and the transaction typ high if an even number of covered covered signals are low. This allo signals are high. AP[1:0]# should processor FSB agents. The follow signals.	pe on the REQ[4:0] and signals are low ows parity to be his d connect the appr	#. A correct parity signal is and low if an odd number of gh when all the covered opriate pins/lands of all
	Output	Request Signals	Subphase 1	Subphase 2
		A[35:24]#	AP0#	AP1#
		A[23:3]#	AP1#	AP0#
		REQ[4:0]#	AP1#	AP0#
BCLK[1:0]	Input	The differential pair BCLK (Bus of processor FSB agents must receilatch their inputs.	eive these signals	to drive their outputs and
		All external timing parameters as BCLK0 crossing V _{CROSS} .	re specified with re	espect to the rising edge of

Table 4-3. Signal Description (Sheet 2 of 8)

Name	Type	Description
		BINIT# (Bus Initialization) may be observed and driven by all processor FSB agents and if used, must connect the appropriate pins/lands of all such agents. If the BINIT# driver is enabled during power-on configuration, BINIT# is asserted to signal any bus condition that prevents reliable future operation.
BINIT#	Input/ Output	If BINIT# observation is enabled during power-on configuration, and BINIT# is sampled asserted, symmetric agents reset their bus LOCK# activity and bus request arbitration state machines. The bus agents do not reset their IOQ and transaction tracking state machines upon observation of BINIT# activation. Once the BINIT# assertion has been observed, the bus agents will re-arbitrate for the FSB and attempt completion of their bus queue and IOQ entries.
		If BINIT# observation is disabled during power-on configuration, a central agent may handle an assertion of BINIT# as appropriate to the error handling architecture of the system.
BNR#	Input/ Output	BNR# (Block Next Request) is used to assert a bus stall by any bus agent unable to accept new bus transactions. During a bus stall, the current bus owner cannot issue any new transactions.
BOOTSELECT	Input	This input is required to determine whether the processor is installed in a platform that supports the Pentium D processor. The processor will not operate if this signal is low. This input has a weak internal pull-up to V_{CC} .
		BPM[5:0]# (Breakpoint Monitor) are breakpoint and performance monitor signals. They are outputs from the processor that indicate the status of breakpoints and programmable counters used for monitoring processor performance. BPM[5:0]# should connect the appropriate pins/lands of all processor FSB agents.
BPM[5:0]#	Input/ Output	BPM4# provides PRDY# (Probe Ready) functionality for the TAP port. PRDY# is a processor output used by debug tools to determine processor debug readiness.
		BPM5# provides PREQ# (Probe Request) functionality for the TAP port. PREQ# is used by debug tools to request debug operation of the processor.
		These signals do not have on-die termination. Refer to Section 2.4 for termination requirements.
BPRI#	Input	BPRI# (Bus Priority Request) is used to arbitrate for ownership of the processor FSB. It must connect the appropriate pins/lands of all processor FSB agents. Observing BPRI# active (as asserted by the priority agent) causes all other agents to stop issuing new requests, unless such requests are part of an ongoing locked operation. The priority agent keeps BPRI# asserted until all of its requests are completed, then releases the bus by de-asserting BPRI#.
BR0#	Input/ Output	BR0# drives the BREQ0# signal in the system and is used by the processor to request the bus. During power-on configuration this signal is sampled to determine the agent ID = 0.
		This signal does not have on-die termination and must be terminated.
BSEL[2:0]	Output	The BCLK[1:0] frequency select signals BSEL[2:0] are used to select the processor input clock frequency. Table 2-18 defines the possible combinations of the signals and the frequency associated with each combination. The required frequency is determined by the processor, chipset and clock synthesizer. All agents must operate at the same frequency. For more information about these signals, including termination recommendations refer to Section 2.7.2.
COMP[1:0]	Analog	COMP[1:0] must be terminated to $V_{\mbox{\footnotesize{SS}}}$ on the system board using precision resistors.
COMP[3:2]	Analog	COMP[3:2] must be terminated to V _{SS} on the system board using precision resistors.
	1	I.

Table 4-3. Signal Description (Sheet 3 of 8)

Name	Type		Desci	ription
		between the processo	r FSB agents, an	nese signals provide a 64-bit data path d must connect the appropriate pins/ r asserts DRDY# to indicate a valid data
		common clock period. DSTBP[3:0]# and DST	D[63:0]# are lato BN[3:0]#. Each ond one DSTBN#.	will, thus, be driven four times in a hed off the falling edge of both group of 16 data signals correspond to a The following table shows the grouping #.
		Quad-Pumped Signa	l Groups	
D[63:0]#	Input/ Output	Data Group	DSTBN#/ DSTBP#	DBI#
		D[15:0]#	0	0
		D[31:16]#	1	1
		D[47:32]#	2	2
		D[63:48]#	3	3
		group of 16 data signa	Is corresponds to	e the polarity of the data signals. Each one DBI# signal. When the DBI# signal s inverted and therefore sampled active
		polarity of the D[63:0]# data on the data bus is group, would have been	signals. The DBI inverted. If more en asserted electrons	ce synchronous and indicate the [3:0]# signals are activated when the than half the data bits, within a 16-bit rically low, the bus agent may invert the chase for that 16-bit group.
		DBI[3:0] Assignment	To Data Bus	
DBI[3:0]#	Input/ Output	Bus Signal	Data Bus Signa	als
		DBI3#	D[63:48]#	
		DBI2#	D[47:32]#	
		DBI1#	D[31:16]#	
		DBI0#	D[15:0]#	
DBR#	Output	implemented on the sy that an in-target probe	stem board. DBF can drive system	ocessor systems where no debug port is ## is used by a debug port interposer so reset. If a debug port is implemented in e system. DBR# is not a processor
DBSY#	Input/ Output	the processor FSB to	ndicate that the c is de-asserted. T	the agent responsible for driving data on lata bus is in use. The data bus is his signal must connect the appropriate.
DEFER#	Input	DEFER# is asserted by an agent to indicate that a transaction cannot be ensured in-order completion. Assertion of DEFER# is normally the responsibility of the addressed memory or input/output agent. This signal must connect the appropriate pins/lands of all processor FSB agents.		
DP[3:0]#	Input/ Output	DP[3:0]# (Data parity) provide parity protection for the D[63:0]# signals. They are driven by the agent responsible for driving D[63:0]#, and must connect the appropriate pins/lands of all processor FSB agents.		

Table 4-3. Signal Description (Sheet 4 of 8)

Name	Type	Description		
DRDY#	Input/ Output	DRDY# (Data Ready) is asserted by the data driver on each data transfer, indicating valid data on the data bus. In a multi-common clock data transfer, DRDY# may be de-asserted to insert idle clocks. This signal must connect the appropriate pins/lands of all processor FSB agents.		
		DSTBN[3:0]# are the data strobes used to latch in D[63:0]#.		
		Signals Associated Strobe		
DCTDN(2:01#	Input/	D[15:0]#, DBI0# DSTBN0#		
DSTBN[3:0]#	Output	D[31:16]#, DBI1# DSTBN1#		
		D[47:32]#, DBI2# DSTBN2#		
		D[63:48]#, DBI3# DSTBN3#		
		DSTBP[3:0]# are the data strobes used to latch in D[63:0]#.		
		Signals Associated Strobe		
	Input/	D[15:0]#, DBI0# DSTBP0#		
DSTBP[3:0]#	Output	D[31:16]#, DBI1# DSTBP1#		
		D[47:32]#, DBI2# DSTBP2#		
		D[63:48]#, DBI3# DSTBP3#		
FCx	Other	FC signals are signals that are available for compatibility with other processors.		
FERR#/PBE#	Output	FERR#/PBE# (floating point error/pending break event) is a multiplexed signal and its meaning is qualified by STPCLK#. When STPCLK# is not asserted, FERR#/PBE# indicates a floating-point error and will be asserted when the processor detects an unmasked floating-point error. When STPCLK# is not asserted, FERR#/PBE# is similar to the ERROR# signal on the Intel 387 coprocessor, and is included for compatibility with systems using MS-DOS*-type floating-point error reporting. When STPCLK# is asserted, an assertion of FERR#/PBE# indicates that the processor has a pending break event waiting for service. The assertion of FERR#/PBE# indicates that the processor should be returned to the Normal state. For additional information on the pending break event functionality, including the identification of support of the feature and enable/disable information, refer to volume 3 of the Intel Architecture Software Developer's Manual and the Intel Processor Identification and the CPUID Instruction application note.		
FORCEPR#	Input	The FORCEPR# input can be used by the platform to force the processor (both cores) to activate the Thermal Control Circuit (TCC). The TCC will remain active until the system de-asserts FORCEPR#.		
GTLREF[1:0]	Input	GTLREF[1:0] determine the signal reference level for GTL+ input signals. GTLREF[1:0] are used by the GTL+ receivers to determine if a signal is a logical 0 or logical 1.		
GTLREF_SEL	Output	GTLREF_SEL is used to select the appropriate chipset GTLREF voltage.		
HIT#	Input/ Output	HIT# (Snoop Hit) and HITM# (Hit Modified) convey transaction snoop operation results. Any FSB agent may assert both HIT# and HITM# together to indicate that it requires a snoop stall, which can be continued by reasserting HIT# and		
HITM#	Input/ Output	Put/ HITM# together.		

Table 4-3. Signal Description (Sheet 5 of 8)

Name	Type	Description
IERR#	Output	IERR# (Internal Error) is asserted by a processor as the result of an internal error. Assertion of IERR# is usually accompanied by a SHUTDOWN transaction on the processor FSB. This transaction may optionally be converted to an external error signal (e.g., NMI) by system core logic. The processor will keep IERR# asserted until the assertion of RESET#.
		This signal does not have on-die termination. Refer to Section 2.4 for termination requirements.
IGNNE#	Input	IGNNE# (Ignore Numeric Error) is asserted to force the processor to ignore a numeric error and continue to execute noncontrol floating-point instructions. If IGNNE# is de-asserted, the processor generates an exception on a noncontrol floating-point instruction if a previous floating-point instruction caused an error. IGNNE# has no effect when the NE bit in control register 0 (CR0) is set.
		IGNNE# is an asynchronous signal. However, to ensure recognition of this signal following an Input/Output write instruction, it must be valid along with the TRDY# assertion of the corresponding Input/Output write bus transaction.
IMPSEL	Input	IMPSEL input will determine whether the processor uses a 50 Ω or 60 Ω buffer. This pin must be tied to GND on 50 Ω platforms and left as NC on 60 Ω platforms.
INIT#	Input	INIT# (Initialization), when asserted, resets integer registers inside the processor without affecting its internal caches or floating-point registers. The processor then begins execution at the power-on Reset vector configured during power-on configuration. The processor continues to handle snoop requests during INIT# assertion. INIT# is an asynchronous signal and must connect the appropriate pins/lands of all processor FSB agents.
		If INIT# is sampled active on the active to inactive transition of RESET#, then the processor executes its Built-in Self-Test (BIST).
ITP_CLK[1:0]	Input	ITP_CLK[1:0] are copies of BCLK that are used only in processor systems where no debug port is implemented on the system board. ITP_CLK[1:0] are used as BCLK[1:0] references for a debug port implemented on an interposer. If a debug port is implemented in the system, ITP_CLK[1:0] are no connects in the system. These are not processor signals.
LINT[1:0]	Input	LINT[1:0] (Local APIC Interrupt) must connect the appropriate pins/lands of all APIC Bus agents. When the APIC is disabled, the LINT0 signal becomes INTR, a maskable interrupt request signal, and LINT1 becomes NMI, a nonmaskable interrupt. INTR and NMI are backward compatible with the signals of those names on the Pentium processor. Both signals are asynchronous.
		Both of these signals must be software configured via BIOS programming of the APIC register space to be used either as NMI/INTR or LINT[1:0]. Because the APIC is enabled by default after Reset, operation of these signals as LINT[1:0] is the default configuration.
LL_ID[1:0]	Output	The LL_ID[1:0] signals are used to select the correct loadline slope for the processor.
LOCK#	Input/	LOCK# indicates to the system that a transaction must occur atomically. This signal must connect the appropriate pins/lands of all processor FSB agents. For a locked sequence of transactions, LOCK# is asserted from the beginning of the first transaction to the end of the last transaction.
LOOK	Output	When the priority agent asserts BPRI# to arbitrate for ownership of the processor FSB, it will wait until it observes LOCK# de-asserted. This enables symmetric agents to retain ownership of the processor FSB throughout the bus locked operation and ensure the atomicity of lock.

Table 4-3. Signal Description (Sheet 6 of 8)

Name	Type	Description
MCERR#	Input/ Output	 MCERR# (Machine Check Error) is asserted to indicate an unrecoverable error without a bus protocol violation. It may be driven by all processor FSB agents. MCERR# assertion conditions are configurable at a system level. Assertion options are defined by the following options: Enabled or disabled. Asserted, if configured, for internal errors along with IERR#. Asserted, if configured, by the request initiator of a bus transaction after it observes an error. Asserted by any bus agent when it observes an error in a bus transaction. For more details regarding machine check architecture, refer to the IA-32 Software Developer's Manual, Volume 3: System Programming Guide.
MSID[1:0]	Input	MSID0 is used to indicate to the processor whether the platform supports processors with the Platform Requirement Bit (PRB) set. A processor with PRB = 1 will only boot if its MSID0 pin is electrically low. A processor with PRB = 0 will ignore this input. MSID1 is ignored by the processor.
PROCHOT#	Output or Input/ Output	For the Pentium D processor PROCHOT# can be configured via BIOS as an output or a bi-directional signal. As an output, PROCHOT# (Processor Hot) will go active when the processor temperature monitoring sensor detects that one or both cores has reached its maximum safe operating temperature. This indicates that the processor Thermal Control Circuit (TCC) has been activated, if enabled. As a bi-directional signal, assertion of PROCHOT# by the system will activate the TCC, if enabled, for both cores. The TCC will remain active until the system de-asserts PROCHOT#. See Section 5.2.3 for more details.
PWRGOOD	Input	PWRGOOD (Power Good) is a processor input. The processor requires this signal to be a clean indication that the clocks and power supplies are stable and within their specifications. 'Clean' implies that the signal will remain low (capable of sinking leakage current), without glitches, from the time that the power supplies are turned on until they come within specification. The signal must then transition monotonically to a high state. PWRGOOD can be driven inactive at any time, but clocks and power must again be stable before a subsequent rising edge of PWRGOOD. The PWRGOOD signal must be supplied to the processor; it is used to protect internal circuits against voltage sequencing issues. It should be driven high throughout boundary scan operation.
REQ[4:0]#	Input/ Output	REQ[4:0]# (Request Command) must connect the appropriate pins/lands of all processor FSB agents. They are asserted by the current bus owner to define the currently active transaction type. These signals are source synchronous to ADSTB0#. Refer to the AP[1:0]# signal description for a details on parity checking of these signals.
RESET#	Input	Asserting the RESET# signal resets the processor to a known state and invalidates its internal caches without writing back any of their contents. For a power-on Reset, RESET# must stay active for at least one millisecond after V _{CC} and BCLK have reached their proper specifications. On observing active RESET#, all FSB agents will de-assert their outputs within two clocks. RESET# must not be kept asserted for more than 10 ms while PWRGOOD is asserted. A number of bus signals are sampled at the active-to-inactive transition of RESET# for power-on configuration. These configuration options are described in the Section 6.1. This signal does not have on-die termination and must be terminated on the system board.
RS[2:0]#	Input	RS[2:0]# (Response Status) are driven by the response agent (the agent responsible for completion of the current transaction), and must connect the appropriate pins/lands of all processor FSB agents.

Table 4-3. Signal Description (Sheet 7 of 8)

Name	Туре	Description
RSP#	Input	RSP# (Response Parity) is driven by the response agent (the agent responsible for completion of the current transaction) during assertion of RS[2:0]#, the signals for which RSP# provides parity protection. It must connect to the appropriate pins/lands of all processor FSB agents.
		A correct parity signal is high if an even number of covered signals are low and low if an odd number of covered signals are low. While RS[2:0]# = 000, RSP# is also high, since this indicates it is not being driven by any agent ensuring correct parity.
SKTOCC#	Output	SKTOCC# (Socket Occupied) will be pulled to ground by the processor. System board designers may use this signal to determine if the processor is present.
SMI#	Input	SMI# (System Management Interrupt) is asserted asynchronously by system logic. On accepting a System Management Interrupt, the processor saves the current state and enters System Management Mode (SMM). An SMI Acknowledge transaction is issued, and the processor begins program execution from the SMM handler.
		If SMI# is asserted during the de-assertion of RESET#, the processor will tristate its outputs.
STPCLK#	Input	STPCLK# (Stop Clock), when asserted, causes the processor to enter a low power Stop-Grant state. The processor issues a Stop-Grant Acknowledge transaction, and stops providing internal clock signals to all processor core units except the FSB and APIC units. The processor continues to snoop bus transactions and service interrupts while in Stop-Grant state. When STPCLK# is de-asserted, the processor restarts its internal clock to all units and resumes execution. The assertion of STPCLK# has no effect on the bus clock; STPCLK# is an asynchronous input.
тск	Input	TCK (Test Clock) provides the clock input for the processor Test Bus (also known as the Test Access Port).
TDI	Input	TDI (Test Data In) transfers serial test data into the processor. TDI provides the serial input needed for JTAG specification support.
TDO	Output	TDO (Test Data Out) transfers serial test data out of the processor. TDO provides the serial output needed for JTAG specification support.
TESTHI[13:0]	Input	TESTHI[13:0] must be connected to the processor's appropriate power source (refer to VTT_OUT_LEFT and VTT_OUT_RIGHT signal description) through a resistor for proper processor operation. See Section 2.4 for more details.
THERMDA	Other	Thermal Diode Anode. See Section 5.2.7.
THERMDC	Other	Thermal Diode Cathode. See Section 5.2.7.
THERMTRIP#	Output	In the event of a catastrophic cooling failure, the processor will automatically shut down when the silicon has reached a temperature approximately 20 °C above the maximum $T_{\rm c}$. Assertion of THERMTRIP# (Thermal Trip) indicates the processor junction temperature has reached a level beyond where permanent silicon damage may occur. Upon assertion of THERMTRIP#, the processor will shut off its internal clocks (thus, halting program execution) in an attempt to reduce the processor junction temperature. To protect the processor, its core voltage ($V_{\rm cc}$) must be removed following the assertion of THERMTRIP#. Driving of the THERMTRIP# signal is enabled within 10 μs of the assertion of PWRGOOD and is disabled on de-assertion of PWRGOOD. Once activated, THERMTRIP# remains latched until PWRGOOD is de-asserted. While the deassertion of the PWRGOOD signal will de-assert THERMTRIP#, if the processor's junction temperature remains at or above the trip level, THERMTRIP# will again be asserted within 10 μs of the assertion of PWRGOOD.
TMS	Input	TMS (Test Mode Select) is a JTAG specification support signal used by debug tools.

Table 4-3. Signal Description (Sheet 8 of 8)

Name	Туре	Description
TRDY#	Input	TRDY# (Target Ready) is asserted by the target to indicate that it is ready to receive a write or implicit writeback data transfer. TRDY# must connect the appropriate pins/lands of all FSB agents.
TRST#	Input	TRST# (Test Reset) resets the Test Access Port (TAP) logic. TRST# must be driven low during power on Reset. Refer to the eXtended Debug Port: Debug Port Design Guide for UP and DP Platforms for complete implementation details.
VCC	Input	VCC are the power pins for the processor. The voltage supplied to these pins is determined by the VID[5:0] pins.
VCCA	Input	VCCA provides isolated power for the internal processor core PLLs.
VCCIOPLL	Input	VCCIOPLL provides isolated power for internal processor FSB PLLs.
VCCPLL	Input	VCCPLL is available for compatibility with future processors.
VCC_SENSE	Output	VCC_SENSE is an isolated low impedance connection to processor core power (V_{CC}). It can be used to sense or measure voltage near the silicon with little noise.
VCC_MB_ REGULATION	Output	This land is provided as a voltage regulator feedback sense point for V _{CC} . It is connected internally in the processor package to the sense point land U27 as described in the <i>Voltage Regulator-Down (VRD) 10.1 Design Guide for Desktop Socket 775</i> .
VID[5:0]	Output	VID[5:0] (Voltage ID) signals are used to support automatic selection of power supply voltages (V _{CC}). These are open drain signals that are driven by the processor and must be pulled up on the motherboard. Refer to the <i>Voltage Regulator-Down (VRD) 10.1 Design Guide for Desktop Socket 775</i> for more information.
VID[5.5]	Output	The voltage supply for these signals must be valid before the VR can supply V_{CC} to the processor. Conversely, the VR output must be disabled until the voltage supply for the VID signals becomes valid. The VID signals are needed to support the processor voltage specification variations. See Table 2-1 for definitions of these signals. The VR must supply the voltage that is requested by the signals, or disable itself.
VSS	Input	VSS are the ground lands for the processor and should be connected to the system ground plane.
VSSA	Input	VSSA is the isolated ground for internal PLLs.
VSS_SENSE	Output	VSS_SENSE is an isolated low impedance connection to processor core V_{SS} . It can be used to sense or measure ground near the silicon with little noise.
VSS_MB_ REGULATION	Output	This land is provided as a voltage regulator feedback sense point for V _{SS} . It is connected internally in the processor package to the sense point land V27 as described in the <i>Voltage Regulator-Down (VRD) 10.1 Design Guide for Desktop Socket 775</i> .
VTT		Miscellaneous voltage supply.
VTT_OUT_LEFT VTT_OUT_RIGHT	Output	The VTT_OUT_LEFT and VTT_OUT_RIGHT signals are included to provide a voltage supply for some signals that require termination to V_{TT} on the motherboard.
VTT_SEL	Output	The VTT_SEL signal is used to select the correct V _{TT} voltage level for the processor.
VTTPWRGD	Input	The processor requires this input to determine that the V_{TT} voltages are stable and within specification.

Land Listing and Signal Descriptions

5 Thermal Specifications and Design Considerations

5.1 Processor Thermal Specifications

The Intel[®] Pentium[®] D processor requires a thermal solution to maintain temperatures within operating limits as set forth in Section 5.1.1. Any attempt to operate the processor outside these operating limits may result in permanent damage to the processor and potentially other components within the system. As processor technology changes, thermal management becomes increasingly crucial when building computer systems. Maintaining the proper thermal environment is key to reliable, long-term system operation.

A complete thermal solution includes both component and system level thermal management features. Component level thermal solutions can include active or passive heatsinks attached to the processor Integrated Heat Spreader (IHS). Typical system level thermal solutions may consist of system fans combined with ducting and venting.

For more information on designing a component level thermal solution, refer to the Intel[®] Pentium[®] D Processor and Intel[®] Pentium[®] Processor Extreme Edition 840 Thermal and Mechanical Design Guidelines.

Note: The boxed processor will ship with a component thermal solution. Refer to Chapter 7 for details on the boxed processor.

5.1.1 Thermal Specifications

To allow for the optimal operation and long-term reliability of Intel processor-based systems, the system/processor thermal solution should be designed such that the processor remains within the minimum and maximum case temperature (T_C) specifications when operating at or below the Thermal Design Power (TDP) value listed per frequency in Table 5-1. Thermal solutions not designed to provide this level of thermal capability may affect the long-term reliability of the processor and system. For more details on thermal solution design, refer to the appropriate processor thermal design guidelines.

The Pentium D processor has a methodology for managing processor temperatures that is intended to support acoustic noise reduction through fan speed control. Selection of the appropriate fan speed will be based on the temperature reported by the processor's Thermal Diode. If the diode temperature is greater than or equal to $T_{CONTROL}$, then the processor case temperature must remain at or below the temperature as specified by the thermal profile. If the diode temperature is less than $T_{CONTROL}$, then the case temperature is permitted to exceed the thermal profile, but the diode temperature must remain at or below $T_{CONTROL}$. Systems that implement fan speed control must be designed to take these conditions into account. Systems that do not alter the fan speed only need to ensure the case temperature meets the thermal profile specifications.

To determine a processor's case temperature specification based on the thermal profile, it is necessary to accurately measure processor power dissipation. Intel has developed a methodology for accurate power measurement that correlates to Intel test temperature and voltage conditions.

Thermal Specifications and Design Considerations

Refer to the Intel[®] Pentium[®] D Processor and Intel[®] Pentium[®] Processor Extreme Edition 840 Thermal and Mechanical Design Guidelines and the Processor Power Characterization Methodology for the details of this methodology.

The case temperature is defined at the geometric top center of the processor IHS. Analysis indicates that real applications are unlikely to cause the processor to consume maximum power dissipation for sustained periods of time. Intel recommends that complete thermal solution designs target the Thermal Design Power (TDP) indicated in Table 5-1 instead of the maximum processor power consumption. The Thermal Monitor feature is intended to help protect the processor in the unlikely event that an application exceeds the TDP recommendation for a sustained period of time. For more details on the usage of this feature, refer to Section 5.2. In all cases, the Thermal Monitor feature must be enabled for the processor to remain within specification.

Table 5-1. Processor Thermal Specifications

Processor Number	Core Frequency (GHz)	Thermal Design Power (W)	Minimum T _C (°C)	Maximum T _C (°C)	Notes
820	2.80 GHz (PRB = 0)	95	5	See Table 5-3 and Figure 5-2	1, 2
830	3 GHz (PRB = 1)	130	5	See Table 5-2 and Figure 5-1	1, 2
840	3.20 GHz (PRB = 1)	130	5	See Table 5-2 and Figure 5-1	1, 2

NOTES:

- Thermal Design Power (TDP) should be used for processor thermal solution design targets. The TDP is not the maximum power that the processor can dissipate.
- This table shows the maximum TDP for a given frequency range. Individual processors may have a lower TDP. Therefore, the
 maximum T_C will vary depending on the TDP of the individual processor. Refer to thermal profile figure and associated table
 for the allowed combinations of power and T_C.

Table 5-2. Thermal Profile for the Pentium D Processor with PRB=1

Power (W)	Maximum T _C (°C)
0	43.8
2	44.2
4	44.6
6	45.0
8	45.4
10	45.8
12	46.2
14	46.6
16	47.0
18	47.4
20	47.8
22	48.2
24	48.6
26	49.0
28	49.4
30	49.8
32	50.2

Power (W)	Maximum T _C (°C)
34	50.6
36	51.0
38	51.4
40	51.8
42	52.2
44	52.6
46	53.0
48	53.4
50	53.8
52	54.2
54	54.6
56	55.0
58	55.4
60	55.8
62	56.2
64	56.6
66	57.0

Power (W)	Maximum T _C (°C)		
68	57.4		
70	57.8		
72	58.2		
74	58.6		
76	59.0		
78	59.4		
80	59.8		
82	60.2		
84	60.6		
86	61.0		
88	61.4		
90	61.8		
92	62.2		
94	62.6		
96	63.0		
98	63.4		
100	63.8		

Power (W)	Maximum T _C (°C)
102	64.2
104	64.6
106	65.0
108	65.4
110	65.8
112	66.2
114	66.6
116	67.0
118	67.4
120	67.8
122	68.2
124	68.6
126	69.0
128	69.4
130	69.8

Figure 5-1. Thermal Profile for the Pentium D Processor with PRB=1

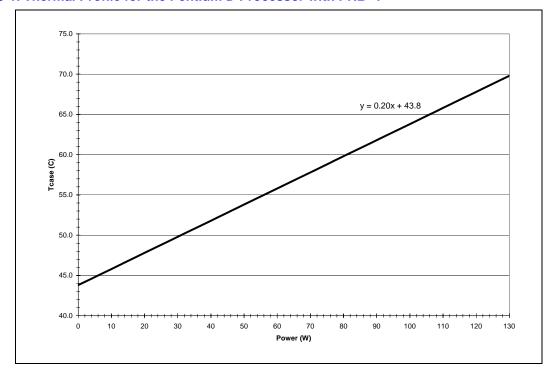
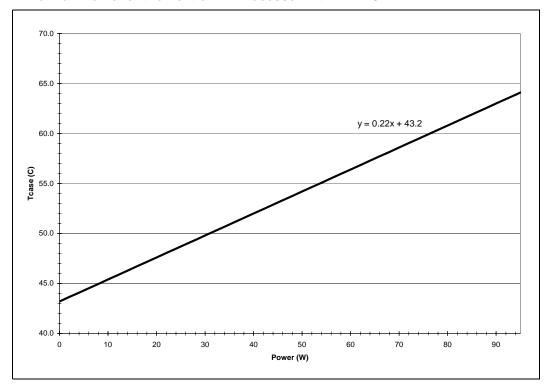


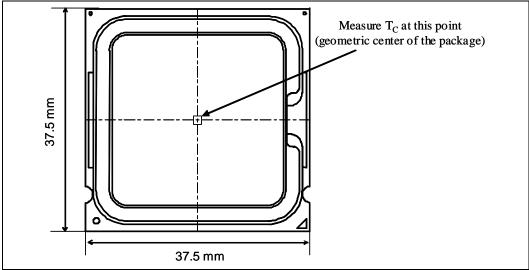
Table 5-3. Thermal Profile for the Pentium D Processor with PRB=0


Power (W)	Maximum T _C (°C)	
0	43.2	
2	43.6	
4	44.1	
6	44.5	
8	45.0	
10	45.4	
12	45.8	
14	46.3	
16	46.7	
18	47.2	
20	47.6	
22	48.0	
24	48.5	

Power (W)	Maximum T _C (°C)
26	48.9
28	49.4
30	49.8
32	50.2
34	50.7
36	51.1
38	51.6
40	52.0
42	52.4
44	52.9
46	53.3
48	53.8
50	54.2

Power (W)	Maximum T _C (°C)
52	54.6
54	55.1
56	55.5
58	56.0
60	56.4
62	56.8
64	57.3
66	57.7
68	58.2
70	58.6
72	59.0
74	59.5
76	59.9

Power (W)	Maximum T _C (°C)
78	60.4
80	60.8
82	61.2
84	61.7
86	62.1
88	62.6
90	63.0
92	63.4
94	63.9
95	64.1


Figure 5-2. Thermal Profile for the Pentium D Processor with PRB=0

5.1.2 **Thermal Metrology**

The maximum and minimum case temperatures (T_C) are specified in Table 5-1. These temperature specifications are meant to help ensure proper operation of the processor. Figure 5-3 illustrates where Intel recommends T_C thermal measurements should be made. For detailed guidelines on temperature measurement methodology, refer to the Intel® Pentium® D Processor and Intel® Pentium® Processor Extreme Edition 840 Thermal and Mechanical Design Guidelines.

5.2 **Processor Thermal Features**

Figure 5-3. Case Temperature (T_C) Measurement Location

5.2.1 Thermal Monitor

The Thermal Monitor feature helps control the processor temperature by activating the TCC when the processor silicon reaches its maximum operating temperature. The TCC reduces processor power consumption as needed by modulating (starting and stopping) the internal processor core clocks. The Thermal Monitor feature must be enabled for the processor to be operating within specifications. The temperature at which Thermal Monitor activates the thermal control circuit is not user configurable and is not software visible. Bus traffic is snooped in the normal manner, and interrupt requests are latched (and serviced during the time that the clocks are on) while the TCC is active.

When the Thermal Monitor feature is enabled, and a high temperature situation exists (i.e., TCC is active), the clocks will be modulated by alternately turning the clocks off and on at a duty cycle specific to the processor (typically 30–50%). Clocks often will not be off for more than 3.0 microseconds when the TCC is active. Cycle times are processor speed dependent and will decrease as processor core frequencies increase. A small amount of hysteresis has been included to prevent rapid active/inactive transitions of the TCC when the processor temperature is near its maximum operating temperature. Once the temperature has dropped below the maximum operating temperature, and the hysteresis timer has expired, the TCC goes inactive and clock modulation ceases.

With a properly designed and characterized thermal solution, it is anticipated that the TCC would only be activated for very short periods of time when running the most power intensive applications. The processor performance impact due to these brief periods of TCC activation is expected to be so minor that it would be immeasurable. An under-designed thermal solution that is not able to prevent excessive activation of the TCC in the anticipated ambient environment may cause a noticeable performance loss, and in some cases may result in a T_C that exceeds the specified maximum temperature and may affect the long-term reliability of the processor. In addition, a thermal solution that is significantly under-designed may not be capable of cooling the processor even when the TCC is active continuously. Refer to the Intel® Pentium® D Processor and Intel® Pentium® Processor Extreme Edition 840 Thermal and Mechanical Design Guidelines for information on designing a thermal solution.

The duty cycle for the TCC, when activated by the Thermal Monitor, is factory configured and cannot be modified. The Thermal Monitor does not require any additional hardware, software drivers, or interrupt handling routines.

5.2.2 On-Demand Mode

The Pentium D processor provides an auxiliary mechanism that allows system software to force the processor to reduce its power consumption. This mechanism is referred to as "On-Demand" mode and is distinct from the Thermal Monitor feature. On-Demand mode is intended as a means to reduce system level power consumption. Systems using the Pentium D processor must not rely on software usage of this mechanism to limit the processor temperature.

If bit 4 of the ACPI P_CNT Control Register (located in the processor IA32_THERM_CONTROL MSR) is written to a '1', the processor will immediately reduce its power consumption via modulation (starting and stopping) of the internal core clock, independent of the processor temperature. When using On-Demand mode, the duty cycle of the clock modulation is programmable via bits 3:1 of the same ACPI P_CNT Control Register. In On-Demand mode, the duty cycle can be programmed from 12.5% on/ 87.5% off, to 87.5% on/12.5% off in 12.5% increments. On-Demand mode may be used in conjunction with the Thermal Monitor. If the system tries to enable On-Demand mode at the same time the TCC is engaged, the factory configured duty cycle of the TCC will override the duty cycle selected by the On-Demand mode.

5.2.3 PROCHOT# Signal

An external signal, PROCHOT# (processor hot), is asserted when the processor core temperature has reached its maximum operating temperature. If the Thermal Monitor is enabled (note that the Thermal Monitor must be enabled for the processor to be operating within specification), the TCC will be active when PROCHOT# is asserted. The processor can be configured to generate an interrupt upon the assertion or de-assertion of PROCHOT#. Refer to the *Intel Architecture Software Developer's Manuals* for specific register and programming details.

For the Pentium D processor, PROCHOT# can be configured via BIOS as an output or a bidirectional signal. As an output, PROCHOT# (Processor Hot) will go active when the processor temperature monitoring sensor detects that one or both cores has reached its maximum safe operating temperature. This indicates that the processor Thermal Control Circuit (TCC) has been activated, if enabled. As an input, assertion of PROCHOT# by the system will activate the TCC, if enabled, for both cores. The TCC will remain active until the system de-asserts PROCHOT#.

Thermal Specifications and Design Considerations

If PROCHOT# is configured as an output only, the FORCEPR# signal can be driven from an external source to activate the TCC. This will prevent one core from asserting the PROCHOT# signal of the other core and unnecessarily activating the TCC of that core. Refer to Section 5.2.4 for details on the FORCEPR# signal.

As a bi-directional signal, PROCHOT# allows for some protection of various components from over-temperature situations. The PROCHOT# signal is bi-directional in that it can either signal when the processor (either core) has reached its maximum operating temperature or be driven from an external source to activate the TCC. The ability to activate the TCC via PROCHOT# can provide a means for thermal protection of system components.

Bi-directional PROCHOT# (if enabled) can allow VR thermal designs to target maximum sustained current instead of maximum current. Systems should still provide proper cooling for the VR, and rely on bi-directional PROCHOT# only as a backup in case of system cooling failure. The system thermal design should allow the power delivery circuitry to operate within its temperature specification even while the processor is operating at its Thermal Design Power. With a properly designed and characterized thermal solution, it is anticipated that bi-directional PROCHOT# would only be asserted for very short periods of time when running the most power intensive applications. An under-designed thermal solution that is not able to prevent excessive assertion of PROCHOT# in the anticipated ambient environment may cause a noticeable performance loss. Refer to the *Voltage Regulator-Down (VRD) 10.1 Design Guide for Desktop Socket 775* for details on implementing the bi-directional PROCHOT# feature. Contact your Intel representative for further details and documentation.

5.2.4 FORCEPR# Signal Pin

The FORCEPR# (force power reduction) input can be used by the platform to cause the processor (both cores) to activate the TCC. If the Thermal Monitor is enabled, the TCC will be activated upon the assertion of the FORCEPR# signal. The TCC will remain active until the system deasserts FORCEPR#. FORCEPR# is an asynchronous input.

FORCEPR# can be used to thermally protect other system components. To use the VR as an example, when the FORCEPR# pin is asserted, the TCC circuit in the processor (both cores) will activate, reducing the current consumption of the processor and the corresponding temperature of the VR.

It should be noted that assertion of the FORCEPR# does not automatically assert PROCHOT#. As mentioned previously, the PROCHOT# signal is asserted when a high temperature situation is detected. A minimum pulse width of $500\,\mu s$ is recommend when the FORCEPR# is asserted by the system. Sustained activation of the FORCEPR# pin may cause noticeable platform performance degradation.

One application is the thermal protection of voltage regulators (VR). System designers can create a circuit to monitor the VR temperature and activate the TCC when the temperature limit of the VR is reached. By asserting FORCEPR# (pulled-low) and activating the TCC, the VR can cool down as a result of reduced processor power consumption. FORCEPR# can allow VR thermal designs to target maximum sustained current instead of maximum current. Systems should still provide proper cooling for the VR, and rely on FORCEPR# only as a backup in case of system cooling failure. The system thermal design should allow the power delivery circuitry to operate within its temperature specification even while the processor is operating at its Thermal Design Power. With a properly designed and characterized thermal solution, it is anticipated that FORCEPR# would only be asserted for very short periods of time when running the most power intensive applications. An under-designed thermal solution that is not able to prevent excessive assertion of FORCEPR# in the anticipated ambient environment may cause a noticeable performance loss. Refer to the

Voltage Regulator-Down (VRD) 10.1 Design Guide for Desktop Socket 775 for details on implementing the FORCEPR# feature. Contact your Intel representative for further details and documentation.

5.2.5 THERMTRIP# Signal

Regardless of whether or not the Thermal Monitor feature is enabled, in the event of a catastrophic cooling failure, the processor will automatically shut down when the silicon has reached an elevated temperature (refer to the THERMTRIP# definition in Table 4-3). At this point, the FSB signal THERMTRIP# will go active and stay active as described in Table 4-3. THERMTRIP# activation is independent of processor activity and does not generate any bus cycles.

5.2.6 T_{CONTROL} and Fan Speed Reduction

 $T_{CONTROL}$ is a temperature specification based on a temperature reading from the thermal diode. The value for $T_{CONTROL}$ will be calibrated in manufacturing and configured for each processor. When T_{DIODE} is above $T_{CONTROL}$, then T_{C} must be at or below T_{C-MAX} as defined by the thermal profile in Table 5-2 and Figure 5-1; otherwise, the processor temperature can be maintained at $T_{CONTROL}$ (or lower) as measured by the thermal diode.

The purpose of this feature is to support acoustic optimization through fan speed control.

5.2.7 Thermal Diode

The processor incorporates an on-die thermal diode. A thermal sensor located on the system board may monitor the die temperature of the processor for thermal management/long term die temperature change purposes. Table 5-4 and Table 5-5 provide the diode parameter and interface specifications. This thermal diode is separate from the Thermal Monitor's thermal sensor and cannot be used to predict the behavior of the Thermal Monitor.

Table 5-4. Thermal Diode Parameters

Symbol	Parameter	Min	Тур	Max	Unit	Notes
I _{FW}	Forward Bias Current	11		187	μΑ	1
n	Diode Ideality Factor	1.0083	1.011	1.023		2, 3, 4, 5
R _T	Series Resistance	3.242	3.33	3.594	Ω	2, 3, 6

NOTES:

- 1. Intel does not support or recommend operation of the thermal diode under reverse bias.
- Characterized at 75 °C
- 3. Not 100% tested. Specified by design characterization.
- 4. The ideality factor, n, represents the deviation from ideal diode behavior as exemplified by the diode equation:

$$I_{FW} = I_S * (e^{qV}D^{/nkT} - 1)$$

where I_S = saturation current, q = electronic charge, V_D = voltage across the diode, k = Boltzmann Constant, and T = absolute temperature (Kelvin).

Devices found to have an ideality factor of 1.0183 to 1.023 will create a temperature error approximately 2 °C higher than
the actual temperature. To minimize any potential acoustic impact of this temperature error, T_{CONTROL} will be increased
by 2 °C on these parts.

Thermal Specifications and Design Considerations

6. The series resistance, R_T, is provided to allow for a more accurate measurement of the thermal diode temperature. R_T, as defined, includes the pins of the processor but does not include any socket resistance or board trace resistance between the socket and the external remote diode thermal sensor. RT can be used by remote diode thermal sensors with automatic series resistance cancellation to calibrate out this error term. Another application is that a temperature offset can be manually calculated and programmed into an offset register in the remote diode thermal sensors as exemplified by the equation:

$$T_{error} = [R_T * (N-1) * I_{FWmin}] / [nk/q * In N]$$

where T_{error} = sensor temperature error, N = sensor current ratio, k = Boltzmann Constant, q = electronic charge.

Table 5-5. Thermal Diode Interface

Signal Name	Land Number	Signal Description
THERMDA	AL1	diode anode
THERMDC	AK1	diode cathode

§

Thermal Specifications and Design Considerations

6 Features

6.1 Power-On Configuration Options

Several configuration options can be configured by hardware. The Intel[®] Pentium[®] D processor samples the hardware configuration at reset, on the active-to-inactive transition of RESET#. For specifications on these options, refer to Table 6-1.

The sampled information configures the processor for subsequent operation. These configuration options cannot be changed except by another reset. All resets reconfigure the processor; for reset purposes, the processor does not distinguish between a "warm" reset and a "power-on" reset.

Table 6-1. Power-On Configuration Option Signals

Configuration Option	Signal ^{1, 2}		
Output tristate	SMI#		
Execute BIST	INIT#		
In Order Queue pipelining (set IOQ depth to 1)	A7#		
Disable MCERR# observation	A9#		
Disable BINIT# observation	A10#		
APIC Cluster ID (0-3)	A[12:11]#		
Disable bus parking	A15#		
Single Logical Processor Mode ³	A31#		
Symmetric agent arbitration ID	BR0#		
RESERVED	A[6:3]#, A8#, A[14:13]#, A[16:30]#, A[32:35]#		

NOTES:

- 1. Asserting this signal during RESET# will select the corresponding option.
- 2. Address signals not identified in this table as configuration options should not be asserted during RESET#.
- This mode is not tested.

6.2 Clock Control and Low Power States

The processor allows the use of AutoHALT and Stop-Grant states to reduce power consumption by stopping the clock to internal sections of the processor, depending on each particular state. See Figure 6-1 for a visual representation of the processor low power states.

The Pentium D processor includes support for the Enhanced HALT powerdown state. Refer to Figure 6-1 and the following sections.

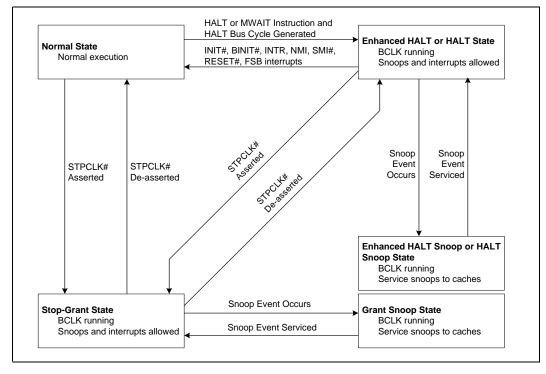


Figure 6-1. Processor Low Power State Machine

6.2.1 Normal State

This is the normal operating state for the processor.

6.2.2 HALT and Enhanced HALT Powerdown States

The Pentium D processor supports the HALT or Enhanced HALT powerdown state. The Enhanced HALT Powerdown state is configured and enabled via the BIOS. The Enhanced HALT state is a lower power state as compared to the Stop Grant State. If Enhanced HALT is not enabled, the default Powerdown state entered will be HALT. Refer to the sections below for details about the HALT and Enhanced HALT states.

6.2.2.1 HALT Powerdown State

HALT is a low power state entered when all the logical processors have executed the HALT or MWAIT instructions. When one of the logical processors executes the HALT instruction, that logical processor is halted; however, the other processor continues normal operation. The processor will transition to the Normal state upon the occurrence of SMI#, BINIT#, INIT#, or LINT[1:0] (NMI, INTR). RESET# will cause the processor to immediately initialize itself.

The return from a System Management Interrupt (SMI) handler can be to either Normal Mode or the HALT Power Down state. See the *Intel Architecture Software Developer's Manual, Volume III: System Programmer's Guide* for more information.

The system can generate a STPCLK# while the processor is in the HALT Power Down state. When the system deasserts the STPCLK# interrupt, the processor will return execution to the HALT state.

While in HALT Power Down state, the processor will process bus snoops.

6.2.2.2 Enhanced HALT Powerdown State

Enhanced HALT is a low power state entered when all logical processors have executed the HALT or MWAIT instructions and Enhanced HALT has been enabled via the BIOS. When one of the logical processors executes the HALT instruction, that logical processor is halted; however, the other processor continues normal operation.

The processor will automatically transition to a lower frequency and voltage operating point before entering the Enhanced HALT state. Note that the processor FSB frequency is not altered; only the internal core frequency is changed. When entering the low power state, the processor will first switch to the lower bus ratio and then transition to the lower VID.

While in Enhanced HALT state, the processor will process bus snoops.

The processor exits the Enhanced HALT state when a break event occurs. When the processor exits the Enhanced HALT state, it will first transition the VID to the original value and then change the bus ratio back to the original value.

6.2.3 Stop-Grant State

When the STPCLK# signal is asserted, the Stop-Grant state of the processor is entered 20 bus clocks after the response phase of the processor-issued Stop Grant Acknowledge special bus cycle.

Since the GTL+ signals receive power from the FSB, these signals should not be driven (allowing the level to return to V_{TT}) for minimum power drawn by the termination resistors in this state. In addition, all other input signals on the FSB should be driven to the inactive state.

BINIT# will not be serviced while the processor is in Stop-Grant state. The event will be latched and can be serviced by software upon exit from the Stop Grant state.

RESET# will cause the processor to immediately initialize itself, but the processor will stay in Stop-Grant state. A transition back to the Normal state will occur with the de-assertion of the STPCLK# signal.

A transition to the HALT/Grant Snoop state will occur when the processor detects a snoop on the FSB (see Section 6.2.4).

While in the Stop-Grant State, SMI#, INIT#, BINIT# and LINT[1:0] will be latched by the processor, and only serviced when the processor returns to the Normal State. Only one occurrence of each event will be recognized upon return to the Normal state.

While in Stop-Grant state, the processor will process a FSB snoop.

6.2.4 Enhanced HALT Snoop or HALT Snoop State, Grant Snoop State

The Enhanced HALT Snoop State is used in conjunction with the new Enhanced HALT state. If Enhanced HALT state is not enabled in the BIOS, the default Snoop State entered will be the HALT Snoop State. Refer to the sections below for details on HALT Snoop State, Grant Snoop State and Enhanced HALT Snoop State.

6.2.4.1 HALT Snoop State, Grant Snoop State

The processor will respond to snoop transactions on the FSB while in Stop-Grant state or in HALT Power Down state. During a snoop transaction, the processor enters the HALT:Grant Snoop state. The processor will stay in this state until the snoop on the FSB has been serviced (whether by the processor or another agent on the FSB). After the snoop is serviced, the processor will return to the Stop-Grant state or HALT Power Down state, as appropriate.

6.2.4.2 Enhanced HALT Snoop State

The Enhanced HALT Snoop State is the default Snoop State when the Enhanced HALT state is enabled via the BIOS. The processor will remain in the lower bus ratio and VID operating point of the Enhanced HALT state.

While in the Enhanced HALT Snoop State, snoops are handled the same way as in the HALT Snoop State. After the snoop is serviced the processor will return to the Enhanced HALT Power Down state.

6.2.5 Enhanced Intel SpeedStep[®] Technology

Enhanced Intel SpeedStep Technology enables the processor to switch between frequency and voltage points, which may result in platform power savings. To support this technology, the system must support dynamic VID transitions. Switching between voltage/frequency states is software controlled.

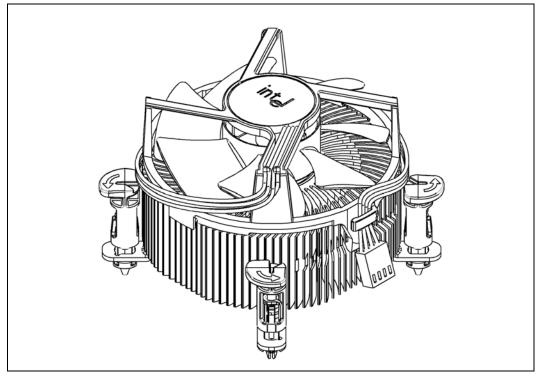
Note: Not all processors are capable of supporting Enhanced Intel SpeedStep Technology. More details on which processor frequencies support this feature will be provided in future releases of the Intel[®] Pentium Processor Extreme Edition and Intel[®] Pentium D Processor Specification Update.

Enhanced Intel SpeedStep Technology is a technology that creates processor performance states (P states). P states are power consumption and capability states within the Normal state as shown in Figure 6-1. Enhanced Intel SpeedStep Technology enables real-time dynamic switching between frequency and voltage points. It alters the performance of the processor by changing the bus to core frequency ratio and voltage. This allows the processor to run at different core frequencies and voltages to best serve the performance and power requirements of the processor and system. Note that the front side bus is not altered; only the internal core frequency is changed. To run at reduced power consumption, the voltage is altered in step with the bus ratio.

The following are key features of Enhanced Intel SpeedStep Technology:

- Voltage/Frequency selection is software controlled by writing to processor MSRs (Model Specific Registers), thus eliminating chipset dependency.
 - If the target frequency is higher than the current frequency, V_{CC} is incremented in steps (+12.5 mV) by placing a new value on the VID signals and the processor shifts to the new frequency. Note that the top frequency for the processor can not be exceeded.
 - If the target frequency is lower than the current frequency, the processor shifts to the new frequency and V_{CC} is then decremented in steps (-12.5 mV) by changing the target VID through the VID signals.

§



7 Boxed Processor Specifications

The Intel® Pentium® D processor will also be offered as an Intel boxed processor. Intel boxed processors are intended for system integrators who build systems from baseboards and standard components. The boxed Pentium D processor will be supplied with a cooling solution. This chapter documents baseboard and system requirements for the cooling solution that will be supplied with the boxed Pentium D processor. This chapter is particularly important for OEMs that manufacture baseboards for system integrators. Unless otherwise noted, all figures in this chapter are dimensioned in millimeters and inches [in brackets]. Figure 7-1 shows a mechanical representation of a boxed Pentium D processor.

Note: Drawings in this section reflect only the specifications on the Intel boxed processor product. These dimensions should not be used as a generic keep-out zone for all cooling solutions. It is the system designers' responsibility to consider their proprietary cooling solution when designing to the required keep-out zone on their system platforms and chassis. Refer to the Intel[®] Pentium[®] D Processor and Intel[®] Pentium[®] Processor Extreme Edition 840 Thermal and Mechanical Design Guidelines for further guidance. Contact your local Intel Sales Representative for this document.

Figure 7-1. Mechanical Representation of the Boxed Processor

NOTE: The airflow of the fan heatsink is into the center and out of the sides of the fan heatsink.

7.1 Mechanical Specifications

7.1.1 Boxed Processor Cooling Solution Dimensions

This section documents the mechanical specifications of the boxed Pentium D processor. The boxed processor will be shipped with an unattached fan heatsink. Figure 7-1 shows a mechanical representation of the boxed Pentium D processor.

Clearance is required around the fan heatsink to ensure unimpeded airflow for proper cooling. The physical space requirements and dimensions for the boxed processor with assembled fan heatsink are shown in Figure 7-2 (Side View), and Figure 7-3 (Top View). The airspace requirements for the boxed processor fan heatsink must also be incorporated into new baseboard and system designs. Airspace requirements are shown in Figure 7-7 and Figure 7-8. Note that some figures have centerlines shown (marked with alphabetic designations) to clarify relative dimensioning.

Figure 7-2. Side View Space Requirements for the Boxed Processor (Applies to all four side views)

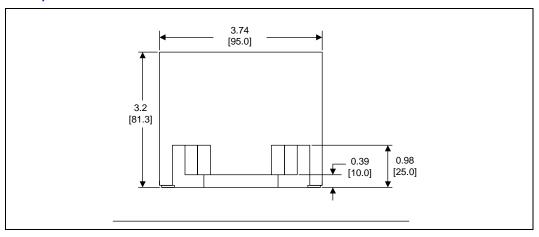
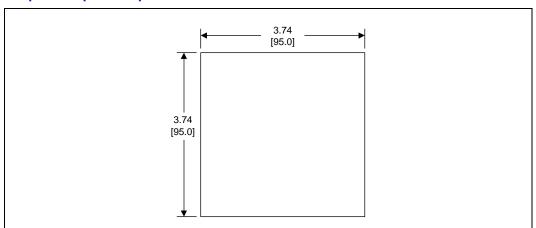



Figure 7-3. Top View Space Requirements for the Boxed Processor

NOTES:

1. Diagram does not show the attached hardware for the clip design and is provided only as a mechanical representation.

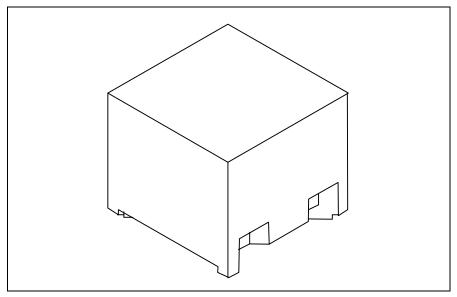


Figure 7-4. Overall View Space Requirements for the Boxed Processor

7.1.2 Boxed Processor Fan Heatsink Weight

The boxed processor fan heatsink will not weigh more than 550 grams. See Chapter 5 and the Intel® Pentium® D Processor and Intel® Pentium® Processor Extreme Edition 840 Thermal and Mechanical Design Guidelines for details on the processor weight and heatsink requirements.

7.1.3 Boxed Processor Retention Mechanism and Heatsink Attach Clip Assembly

The boxed processor thermal solution requires a heatsink attach clip assembly, to secure the processor and fan heatsink in the baseboard socket. The boxed processor will ship with the heatsink attach clip assembly.

7.2 Electrical Requirements

7.2.1 Fan Heatsink Power Supply

The boxed processor's fan heatsink requires a +12 V power supply. An attached fan power cable will be shipped with the boxed processor to draw power from a power header on the baseboard. The power cable connector and pinout are shown in Figure 7-5. Baseboards must provide a matched power header to support the boxed processor. Table 7-1 contains specifications for the input and output signals at the fan heatsink connector.

The fan heatsink outputs a SENSE signal that is an open-collector output that pulses at a rate of 2 pulses per fan revolution. A baseboard pull-up resistor provides V_{OH} to match the system board-mounted fan speed monitor requirements, if applicable. Use of the SENSE signal is optional. If the SENSE signal is not used, pin 3 of the connector should be tied to GND.

The fan heatsink receives a PWM signal from the motherboard from the 4th pin of the connector labeled as CONTROL.

The boxed processor's fan heatsink requires a constant +12 V supplied to pin 2 and does not support variable voltage control or 3-pin PWM control.

The power header on the baseboard must be positioned to allow the fan heatsink power cable to reach it. The power header identification and location should be documented in the platform documentation, or on the system board itself. Figure 7-6 shows the location of the fan power connector relative to the processor socket. The baseboard power header should be positioned within 110 mm [4.33 inches] from the center of the processor socket.

Figure 7-5. Boxed Processor Fan Heatsink Power Cable Connector Description

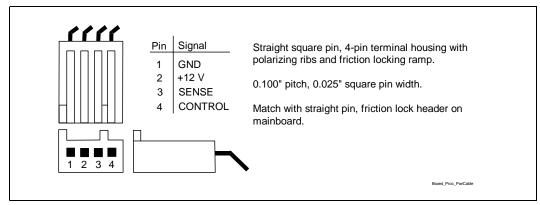


Table 7-1. Fan Heatsink Power and Signal Specifications

Description	Min	Тур	Max	Unit	Notes
+12 V: 12 volt fan power supply	11.4	12	12.6	V	-
IC:		-			
Peak fan steady-state current draw	Peak fan steady-state current draw 3.0		Α		
Average fan steady-state current draw 2.0		Α	-		
Max fan start-up current draw	3.0		Α		
Fan start-up current draw maximum duration		1.0		Second	
Sense frequency	_ 2		pulses per fan revolution	1	
CONTROL frequency	21	25	28	kHz	2, 3

NOTES:

- 1. Baseboard should pull this pin up to 5 V with a resistor.
- Open drain type, pulse width modulated.
- 3. Fan will have pull-up resistor to 4.75 V maximum of 5.25 V.

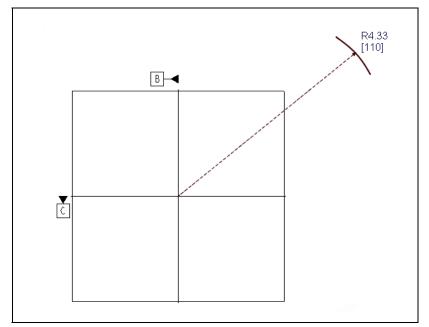


Figure 7-6. Baseboard Power Header Placement Relative to Processor Socket

7.3 Thermal Specifications

This section describes the cooling requirements of the fan heatsink solution utilized by the boxed processor.

7.3.1 Boxed Processor Cooling Requirements

The boxed processor may be directly cooled with a fan heatsink. However, meeting the processor's temperature specification is also a function of the thermal design of the entire system, and ultimately the responsibility of the system integrator. The processor temperature specification is found in Chapter 5 of this document. The boxed processor fan heatsink is able to keep the processor temperature within the specifications (see Table 5-1) in chassis that provide good thermal management. For the boxed processor fan heatsink to operate properly, it is critical that the airflow provided to the fan heatsink is unimpeded. Airflow of the fan heatsink is into the center and out of the sides of the fan heatsink. Airspace is required around the fan to ensure that the airflow through the fan heatsink is not blocked. Blocking the airflow to the fan heatsink reduces the cooling efficiency and decreases fan life. Figure 7-7 and Figure 7-8 illustrate an acceptable airspace clearance for the fan heatsink. The air temperature entering the fan should be kept below 39 °C. A Thermally Advantaged Chassis with an Air Guide 1.1 is recommended to meet the 39 °C requirement. Again, meeting the processor's temperature specification is the responsibility of the system integrator.

Note: The processor fan is the primary source of airflow for cooling the V_{CC} voltage regulator. Dedicated voltage regulator cooling components may be necessary if the selected fan is not capable of keeping regulator components below maximum rated temperatures.

Figure 7-7. Boxed Processor Fan Heatsink Airspace Keepout Requirements (side 1 view)

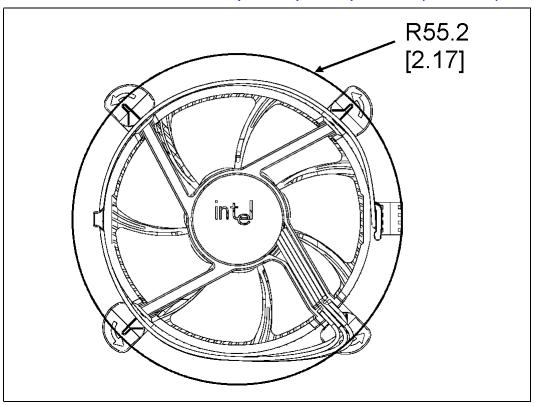
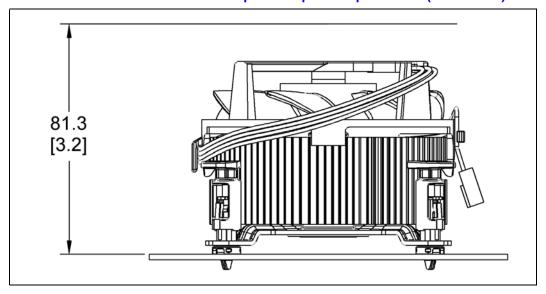



Figure 7-8. Boxed Processor Fan Heatsink Airspace Keepout Requirements (side 2 view)

7.3.2 Variable Speed Fan

If the boxed processor fan heatsink 4-pin connector is connected to a 3-pin motherboard header it will operate as follows:

The boxed processor fan will operate at different speeds over a short range of internal chassis temperatures. This allows the processor fan to operate at a lower speed and noise level, while internal chassis temperatures are low. If internal chassis temperature increases beyond a lower set point, the fan speed will rise linearly with the internal temperature until the higher set point is reached. At that point, the fan speed is at its maximum. As fan speed increases, so does fan noise levels. Systems should be designed to provide adequate air around the boxed processor fan heatsink that remains cooler then lower set point. These set points, represented in Figure 7-9 and Table 7-2, can vary by a few degrees from fan heatsink to fan heatsink. The internal chassis temperature should be kept below 39 °C. Meeting the processor's temperature specification (see Chapter 5) is the responsibility of the system integrator.

The motherboard must supply a constant +12~V to the processor's power header to ensure proper operation of the variable speed fan for the boxed processor. Refer to Table 7-1 for the specific requirements.

Lower Set Point
Lowest Noise Level

X
Y
Z

Internal Chassis Temperature (Degrees C)

Figure 7-9. Boxed Processor Fan Heatsink Set Points

Table 7-2. Fan Heatsink Power and Signal Specifications

Boxed Processor Fan Heatsink Set Point (°C)	Boxed Processor Fan Speed	Notes
X ≤ 30	When the internal chassis temperature is below or equal to this set point, the fan operates at its lowest speed. Recommended maximum internal chassis temperature for nominal operating environment.	1
Y = 35	When the internal chassis temperature is at this point, the fan operates between its lowest and highest speeds. Recommended maximum internal chassis temperature for worst-case operating environment.	-
Z ≥ 39	When the internal chassis temperature is above or equal to this set point, the fan operates at its highest speed.	-

NOTES:

^{1.} Set point variance is approximately \pm 1 °C from fan heatsink to fan heatsink.

Boxed Processor Specifications

If the boxed processor fan heatsink 4-pin connector is connected to a 4-pin motherboard header and the motherboard is designed with a fan speed controller with PWM output (For details on CONTROL, see Table 7-1) and remote thermal diode measurement capability the boxed processor will operate as follows:

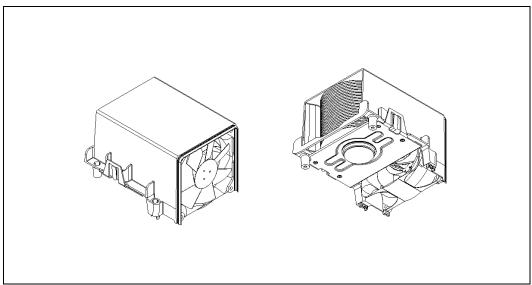
As processor power has increased the required thermal solutions have generated increasingly more noise. Intel has added an option to the boxed processor that allows system integrators to have a quieter system in the most common usage.

The 4th wire PWM solution provides better control over chassis acoustics. This is achieved by more accurate measurement of processor die temperature through the processor's temperature diode (T_{DIODE}). Fan RPM is modulated through the use of an ASIC located on the motherboard that sends out a PWM control signal to the 4th pin of the connector labeled as CONTROL. The fan speed is based on the actual processor temperature instead of internal ambient chassis temperatures.

If the new 4-pin active fan heat sink solution is connected to an older 3-pin baseboard processor fan header, it will default back to a thermistor controlled mode. This allows compatibility with existing 3-pin baseboard designs. Under thermistor controlled mode, the fan RPM is automatically varied based on the T_{inlet} temperature measured by a thermistor located at the fan inlet.

For more details on specific motherboard requirements for 4-wire based fan speed control, see the $Intel^{\circledR}$ Pentium D Processor and $Intel^{\circledR}$ Pentium Processor Extreme Edition 840 Thermal and Mechanical Design Guidelines.

§


8 Balanced Technology Extended (BTX) Type I Boxed Processor Specifications

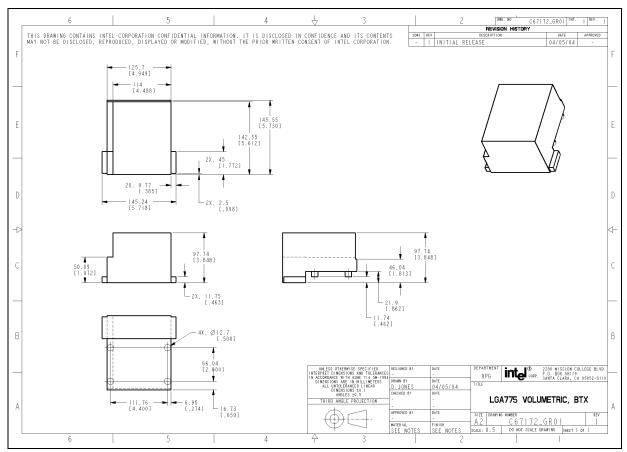
The Intel® Pentium® D processor will also be offered as an boxed Intel processor. Boxed Intel processors are intended for system integrators who build systems from largely standard components. The boxed Intel Pentium D processor will be supplied with a cooling solution known as the Thermal Module Assembly (TMA). Figure 8-1 shows a mechanical representation of a boxed Pentium D processor. This chapter documents mainboard and system requirements for the TMA that will be supplied with the boxed Pentium D processor. This chapter is particularly important for OEMs that manufacture mainboards for system integrators.

Note: Unless otherwise noted, all figures in this chapter are dimensioned in millimeters and inches [in brackets].

Note: Drawings in this section reflect only the specifications on the boxed Intel processor product. These dimensions should not be used as a generic keep-out zone for all cooling solutions. It is the system designer's responsibility to consider their proprietary cooling solution when designing to the required keep-out zone on their system platforms and chassis. Refer to the Intel[®] Pentium[®] D Processor and Intel[®] Pentium[®] Processor Extreme Edition 840 Thermal and Mechanical Design Guidelines for further guidance.

Figure 8-1. Mechanical Representation of the Boxed Processor

NOTE: The duct, clip, heatsink, and fan can differ from this drawing representation; however, the basic shape and size will remain the same.



8.1 Mechanical Specifications

8.1.1 Cooling Solution Dimensions

This section documents the mechanical specifications of the boxed Pentium D processor TMA. The boxed processor will be shipped with an unattached TMA. Figure 8-2 shows a mechanical representation of the boxed Pentium D processor TMA. The physical space requirements and dimensions for the boxed processor with assembled fan heatsink are shown.

Figure 8-2. Requirements for the Balanced Technology Extended (BTX) Type I Keep-out Volumes

NOTE: The diagram does not show the attached hardware for the clip design and is provided only as a mechanical representation.

8.1.2 Boxed Processor Fan Heatsink Weight

The boxed processor fan heatsink will not weigh more than 1290 grams. See Chapter 3 and the Intel[®] Pentium[®] D Processor and Intel[®] Pentium[®] Processor Extreme Edition 840 Thermal and Mechanical Design Guidelines for details on the processor weight and heatsink requirements.

8.1.3 Boxed Processor Support and Retention Module (SRM)

The boxed processor TMA requires a SRM assembly to attach directly to the chassis base pan and to secure the processor and TMA in the mainboard socket. The boxed processor TMA will ship with the heatsink attach clip assembly, duct, and screws for attachment. The SRM must be supplied by the chassis hardware vendor. See the *Support and Retention Module (SRM) External Design Requirements Document, Balanced Technology Extended (BTX) System Design Guide*, and the *Intel*[®] *Pentium*[®] *D Processor and Intel*[®] *Pentium*[®] *Processor Extreme Edition 840 Thermal and Mechanical Design Guidelines* for more detailed design information regarding the support and retention module.

Thermal Module Assembly

• Heatsink & Fan

• Clip

• Structural Duct

Motherboard

SRM

Chassis Pan

Figure 8-3. Assembly Stack Including the Support and Retention Module

8.2 Electrical Requirements

8.2.1 Fan Heatsink Power Supply

The boxed processor's fan heatsink requires a +12 V power supply. A fan power cable will be shipped with the boxed processor to draw power from a power header on the baseboard. The power cable connector and pinout are shown in Figure 8-4. Baseboards must provide a matched power header to support the boxed processor. Table 8-1 contains specifications for the input and output signals at the fan heatsink connector.

The fan heatsink outputs a SENSE signal that is an open-collector output that pulses at a rate of 2 pulses per fan revolution. A baseboard pull-up resistor provides V_{OH} to match the system board-mounted fan speed monitor requirements, if applicable. Use of the SENSE signal is optional. If the SENSE signal is not used, pin 3 of the connector should be tied to GND.

Balanced Technology Extended (BTX) Type I Boxed Processor Specifications

The fan heatsink receives a PWM signal from the motherboard from the 4th pin of the connector labeled as CONTROL.

Note: The boxed processor's fan heatsink requires a constant +12 V supplied to pin 2 and does not support variable voltage control or 3-pin PWM control.

The power header on the baseboard must be positioned to allow the fan heatsink power cable to reach it. The power header identification and location should be documented in the platform documentation, or on the system board itself. Figure 8-5 shows the location of the fan power connector relative to the processor socket. The baseboard power header should be positioned within 4.33 inches from the center of the processor socket.

Figure 8-4. Boxed Processor Fan Heatsink Power Cable Connector

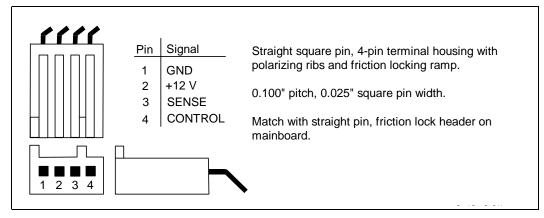


Table 8-1. Fan Heatsink Power and Signal Specifications

Description	Min	Тур	Max	Unit	Notes
+12 V: 12 volt fan power supply	10.2	12	13.8	V	
IC: Peak Fan current draw Fan start-up current draw Fan start-up current draw maximum duration	_ _ _	_ 1.0 _	1.5 2.0 1.0	A A Second	
SENSE: SENSE frequency	_	2	_	pulses per fan revolution	1
CONTROL	21	25	28	kHz	2,3

NOTES:

- 1. Baseboard should pull this pin up to 5 V with a resistor.
- 2. Open Drain Type, Pulse Width Modulated.
- 3. Fan will have a pull-up resistor to 4.75 V, maximum 5.25 V.

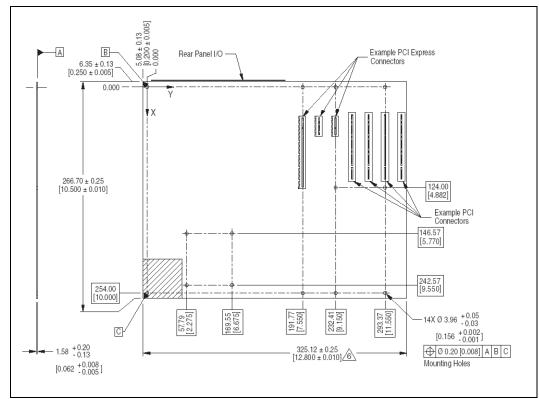


Figure 8-5. Balanced Technology Extended (BTX) Mainboard Power Header Placement (hatched area)

8.3 Thermal Specifications

This section describes the cooling requirements of the fan heatsink solution used by the boxed processor.

8.3.1 Boxed Processor Cooling Requirements

The boxed processor may be directly cooled with a fan heatsink. However, meeting the processor's temperature specification is also a function of the thermal design of the entire system, and ultimately the responsibility of the system integrator. The processor temperature specification is found in Chapter 5. The boxed processor TMA is able to keep the processor temperature within the specifications listed in Table 5-1 for chassis that provide good thermal management. For the boxed processor TMA to operate properly, it is critical that the airflow provided to the TMA is unimpeded. Airflow of the TMA is into the duct and out of the rear of the duct in a linear flow. Blocking the airflow to the TMA inlet reduces the cooling efficiency and decreases fan life. The air temperature entering the fan should be kept below 35 °C. Meeting the processor's temperature specification is the responsibility of the system integrator.

8.3.2 Variable Speed Fan

If the boxed processor fan heatsink 4-pin connector is connected to a 3-pin motherboard header, it will operate as follows:

The boxed processor fan will operate at different speeds over a short range of temperatures based on a thermistor located in the fan hub area. This allows the boxed processor fan to operate at a lower speed and noise level while thermistor temperatures are low. If the thermistor senses a temperatures increase beyond a lower set point, the fan speed will rise linearly with the temperature until the higher set point is reached. At that point, the fan speed is at its maximum. As fan speed increases, so does fan noise levels. These set points are represented in Figure 8-6 and Table 8-2. The internal chassis temperature should be kept below 38 °C. Meeting the processor's temperature specification (see Chapter 5) is the responsibility of the system integrator.

Note: The motherboard must supply a constant +12 V to the processor's power header to ensure proper operation of the variable speed fan for the boxed processor (refer to Table 8-1) for the specific requirements.

Figure 8-6. Boxed Processor TMA Set Points

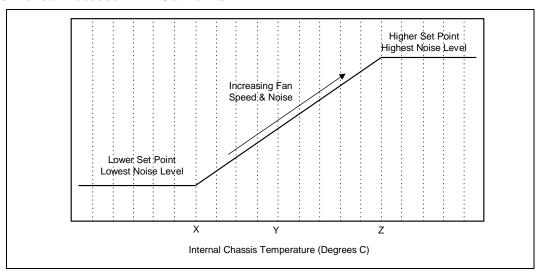


Table 8-2. Balanced Technology Extended (BTX) Type I Boxed Processor TMA Set Points for 3-wire Operation

Boxed Processor TMA Set Point (°C)	Boxed Processor Fan Speed	
X ≤ 23	When the internal chassis temperature is below or equal to this set point, the fan operates at its lowest speed. Recommended maximum internal chassis temperature for nominal operating environment.	1
Y = 29	When the internal chassis temperature is at this point, the fan operates between its lowest and highest speeds. Recommended maximum internal chassis temperature for worst-case operating environment.	
Z ≥35	When the internal chassis temperature is above or equal to this set point, the fan operates at its highest speed.	1

NOTES:

^{1.} Set point variance is approximately ±1 °C from fan heatsink to fan heatsink.

Balanced Technology Extended (BTX) Type I Boxed Processor Specifications

If the boxed processor TMA 4-pin connector is connected to a 4-pin motherboard header and the motherboard is designed with a fan speed controller with PWM output (see Table 8-1) and remote thermal diode measurement capability, the boxed processor will operate as described in the following paragraphs.

As processor power has increased the required thermal solutions have generated increasingly more noise. Intel has added an option to the boxed processor that allows system integrators to have a quieter system in the most common usage.

The 4^{th} wire PWM solution provides better control over chassis acoustics. This is achieved by more accurate measurement of processor die temperature through the processor's temperature diode (T_{DIODE}). Fan RPM is modulated through the use of an ASIC located on the motherboard that sends out a PWM control signal to the 4^{th} pin of the connector labeled as CONTROL. The fan speed is based on a combination of actual processor temperature and thermistor temperature.

If the new 4-pin active TMA solution is connected to an older 3-pin baseboard processor fan header, it will default back to a thermistor controlled mode allowing compatibility with existing 3-pin baseboard designs. Under thermistor controlled mode, the fan RPM is automatically varied based on the T_{inlet} temperature measured by a thermistor located at the fan inlet.

For more details on specific motherboard requirements for 4-wire based fan speed control, see the Intel[®] Pentium[®] D Processor and Intel[®] Pentium[®] Processor Extreme Edition 840 Thermal and Mechanical Design Guidelines.

§

Balanced Technology Extended (BTX) Type I Boxed Processor Specifications

9 Debug Tools Specifications

Refer to the *eXtended Debug Port: Debug Port Design Guide for UP and DP Platforms* and the *ITP700 Debug Port Design Guide* for information regarding debug tools specifications. For more information, contact your Intel sales representative. The *ITP700 Debug Port Design Guide* is located at http://www.intel.com/design/xeon/guides/249679.htm.

9.1 Logic Analyzer Interface (LAI)

Intel is working with two logic analyzer vendors to provide logic analyzer interfaces (LAIs) for use in debugging Intel[®] Pentium[®] D processor systems. Tektronix* and Agilent* should be contacted to get specific information about their logic analyzer interfaces. The following information is general in nature. Specific information must be obtained from the logic analyzer vendor.

Due to the complexity of Pentium D processor systems, the LAI is critical in providing the ability to probe and capture FSB signals. There are two sets of considerations to keep in mind when designing a Pentium D processor system that can make use of an LAI: mechanical and electrical.

9.1.1 Mechanical Considerations

The LAI is installed between the processor socket and the Pentium D processor. The LAI lands plug into the socket, while the Pentium D processor lands plug into a socket on the LAI. Cabling that is part of the LAI egresses the system to allow an electrical connection between the Pentium D processor and a logic analyzer. The maximum volume occupied by the LAI, known as the keepout volume, as well as the cable egress restrictions, should be obtained from the logic analyzer vendor. System designers must make sure that the keepout volume remains unobstructed inside the system. Note that it is possible that the keepout volume reserved for the LAI may differ from the space normally occupied by the Pentium D processor heatsink. If this is the case, the logic analyzer vendor will provide a cooling solution as part of the LAI.

9.1.2 Electrical Considerations

The LAI will also affect the electrical performance of the FSB; therefore, it is critical to obtain electrical load models from each of the logic analyzers to be able to run system level simulations to prove that their tool will work in the system. Contact the logic analyzer vendor for electrical specifications and load models for the LAI solution they provide.

8